Abstract:
A circuit board of an image sensor unit of this invention includes a substrate, a first circuit pattern portion formed on the substrate, and a second circuit pattern portion formed continuously from the first circuit pattern portion. A light source is connected to the second circuit pattern portion. The light source is arranged facing an incident surface by bending the second circuit pattern portion.
Abstract:
An image sensor unit includes a frame in which a light source and an image sensor are housed, and a cover member that is bonded to the frame. The cover member is bonded by means of a double-sided tape that includes a film-shaped substrate and adhesive layers formed on both sides of the substrate. Slits that extend from one outer edge in a width direction to an intermediate portion in the width direction and slits that extend from the other outer edge in the width direction to an intermediate portion in the width direction are formed in the double-sided tape. The respective slits that are adjacent include an overlapping portion when viewed in a long-side direction.
Abstract:
A reflection reading light guide that emits light of a reflection reading light source, from a reflected light emission surface to bill S; a transmission reading light guide that emits light of a transmission reading light source, from a transmitted light emission surface to bill S; a rod-lens array that focuses reflected light from the bill S and/or transmitted light transmitted through bill S; a light receiving element that receives light collected by the rod-lens array; and a frame including a housing portion that houses the reflection reading light guide are disclosed. A light blocking portion that protrudes from the reflected light emission surface of the reflection reading light guide toward optical axis Z of the rod-lens array is included in the housing portion, and includes a positioning reference surface for the reflection reading light guide. Influence of stray light is reduced, and accuracy of read image is improved.
Abstract:
A sensor substrate unit is formed by connecting edges of a plurality of sensor substrates in a longitudinal direction. Sensor chips at the edges are mounted beyond the edges. The edges include convex portions and convex portions for connecting the sensor substrates. Farthest tips of the sensor chips are positioned inside of farthest edges of the convex portions and inside of farthest edges of the convex portions in the longitudinal direction.
Abstract:
An image sensor unit includes: a light source including a light emitting element on a light emitting surface; a light guide that causes light from the light source to be incident on a light incident surface facing to the light emitting surface, ejects the light from a light ejecting surface and illuminates a document; a rod lens array that images reflected light from the document; a sensor substrate on which a photoelectric conversion element is mounted, the photoelectric conversion element converting the reflected light imaged by the rod lens array into an electric signal; and a frame that supports the light source, the light guide, the rod lens array and the sensor substrate, wherein positioning sections are provided on an opposite side of the light emitting surface of the light source and at a part of the frame which is disposed at the opposite side of the light emitting surface.
Abstract:
In an image sensor unit including a plurality of sensor chips mounted in a line on a sensor substrate, image signals from the sensor chips are sequentially read according to a reading order among the sensor chips, a current consumption circuit that consumes set current is arranged, and the current consumption circuit starts consuming the set current in response to a signal indicating end of reading of the image signals by all of the sensor chips and ends consuming the set current in response to a signal indicating start of reading of the image signals first by the sensor chip after a start signal to thereby reduce variation in the current consumption of the image sensor unit.
Abstract:
An image sensor unit includes: a light source including a light-emitting surface that emits light; a substantially rod-shaped light guide including a light emitter that linearizes the light from the light source and irradiates a sheet; an image sensor that receives light from the sheet and converts the light into an electric signal; a light condenser focusing the light from the sheet onto the image sensor; a circuit board on which the light source and the image sensor are mounted; and a frame accommodating the light guide, the light condenser and the circuit board. The light condenser and the light emitter of the light guide are disposed substantially parallel to each other. The center line of the light-emitting surface of the light source is disposed nearer the optical axis of the light condenser than the center line of the light emitter.
Abstract:
An image sensor unit includes a reflection reading light source that illuminates a bill, a substrate on which the reflection reading light source is mounted, a reflection reading light guide that guides the light emitted by the reflection reading light source to the bill, a rod-lens array that focuses the light from the bill, a light receiving element that receives the light from the rod-lens array, a sensor substrate on which the light receiving element is mounted, and a frame that houses the substrate, the reflection reading light guide, the rod-lens array and the sensor substrate. The sensor substrate has a passage hole and is disposed closer to the bill than the substrate. The frame is disposed with the reflection reading light guide inserted into the passage hole, so that the light from the reflection reading light source reaches the bill through the passage hole.
Abstract:
An image sensor unit includes: a light source including a light emitting element on a light emitting surface; a light guide that causes light from the light source to be incident on a light incident surface facing to the light emitting surface, ejects the light from a light ejecting surface and illuminates a document; a rod lens array that images reflected light from the document; a sensor substrate on which a photoelectric conversion element is mounted, the photoelectric conversion element converting the reflected light imaged by the rod lens array into an electric signal; and a frame that supports the light source, the light guide, the rod lens array and the sensor substrate, wherein positioning sections are provided on an opposite side of the light emitting surface of the light source and at a part of the frame which is disposed at the opposite side of the light emitting surface.
Abstract:
An image sensor unit includes: a light source including a light emitting element on a light emitting surface; a light guide that causes light from the light source to be incident on a light incident surface facing to the light emitting surface, ejects the light from a light ejecting surface and illuminates a document; a rod lens array that images reflected light from the document; a sensor substrate on which a photoelectric conversion element is mounted, the photoelectric conversion element converting the reflected light imaged by the rod lens array into an electric signal; and a frame that supports the light source, the light guide, the rod lens array and the sensor substrate, wherein positioning sections are provided on an opposite side of the light emitting surface of the light source and at a part of the frame which is disposed at the opposite side of the light emitting surface.