Abstract:
The present invention generally relates to a field emission light source and specifically to a miniaturized field emission light source that is possible to manufacture in large volumes at low cost using the concept of wafer level manufacturing, i.e., a similar approach as used by integrated circuits (IC) and microelectromechanical systems (MEMS). The invention also relates to a lighting arrangement comprising at least one field emission light source.
Abstract:
The present invention relates to a method for controllably growing ZnO nanowires, for example to be used in relation to field emission lighting. In particular, the invention relates to a method of controlling thermal oxidation conditions to achieve steady-state conditions between an oxygen consumption rate by a growing oxide on a surface of a structure and the decomposition rate of the oxygen-carrying species within the chamber. The invention also relates to a corresponding field emission cathode.
Abstract:
The present invention relates to a method for controllably growing ZnO nanowires, for example to be used in relation to field emission lighting. In particular, the invention relates to a method of controlling thermal oxidation conditions to achieve steady-state conditions between an oxygen consumption rate by a growing oxide on a surface of a structure and the decomposition rate of the oxygen-carrying species within the chamber. The invention also relates to a corresponding field emission cathode.
Abstract:
The present invention relates to a field emission lighting arrangement, comprising a first field emission cathode, an anode structure comprising a phosphor layer, and an evacuated envelope inside of which the anode structure and the first field emission cathode are arranged, wherein the anode structure is configured to receive electrons emitted by the first field emission cathode when a voltage is applied between the anode structure and the first field emission cathode and to reflect light generated by the phosphor layer out from the evacuated chamber.Advantages of the invention include lower power consumption as well as an increase in light output of the field emission lighting arrangement.
Abstract:
The present invention relates to an x-ray source, comprising a field emission cathode, an anode, connectors for allowing application of a high voltage between the cathode and the anode for enabling emission of an x-ray beam, and an evacuated chamber inside of which the anode and the cathode are arranged, the evacuated chamber having an x-ray transparent window, wherein the field emission cathode consists of a carbonized solid compound foam having a continuous cellular structure, the continuous cellular structure providing multiple emission cites for emission of electrons onto the anode when the high voltage is applied. The field emission cathode provides for the possibility to increase the efficiency of the x-ray system as it is possible to in a much higher degree control the electrons emitted by the field emission cathode in terms of switching time, current, kinetic energy and the emission direction.