Abstract:
Processes for synthesizing the hexagonal polymorph of boron nitride (h-BN) produce h-BN of a grade that is highly suitable for ultraviolet (UV) field-emission lights and other UV applications.
Abstract:
Transition radiation from nanotubes, nanosheets, and nanoparticles and in particular, boron nitride nanomaterials, can be utilized for the generation of light. Wavelengths of light of interest for microchip lithography, including 13.5 nm (91.8 eV) and 6.7 nm (185 eV), can be generated at useful intensities, by transition radiation light sources. Light useful for monitoring relativistic charged particle beam characteristics such as spatial distribution and intensity can be generated.
Abstract:
Provided is a linearly polarized ultra-short terahertz wave generating device which has a parabolic barrel mirror installed at one side of a multiple thin film, to generate an ultra-short terahertz wave having single linear-polarized light and uniformly formed output distribution.
Abstract:
Provided is a reddish light emitting phosphorescent phosphor, that is efficiently excited with visible light and is chemically stable. The phosphorescent phosphor comprises a compound represented by MSi2O2N2:Yb,R, wherein M is at least one metal element selected from strontium, calcium, barium, and magnesium, and R is at least one element selected front erbium, holmium, gadolinium, praseodymium, terbium, dysprosium, neodymium, bismuth, scandium, and chromium. The phosphorescent phosphor is an excellent phosphorescent phosphor having a reddish afterglow.
Abstract:
The present invention relates to the field of field emission lighting, and specifically to a method for forming a field emission cathode. The method comprises arranging a growth substrate in a growth solution comprising a Zn-based growth agent, the growth solution having a pre-defined pH-value at room temperature; increasing the pH value of the growth solution to reach a nucleation phase; upon increasing the pH of the solution nucleation starts. The growth phase is then entered by decreasing the pH. The length of the nanorods is determined by the growth time. The process is terminated by increasing the pH to form sharp tips. The invention also relates to a structure for such a field emission cathode and to a lighting arrangement comprising the field emission cathode.
Abstract:
The present invention generally relates to a field emission light source and specifically to a miniaturized field emission light source that is possible to manufacture in large volumes at low cost using the concept of wafer level manufacturing, i.e. a similar approach as used by IC's and MEMS. The invention also relates to a lighting arrangement comprising at least one field emission light source. The field emission light source comprises: a field emission cathode (106) comprising a plurality of nanostructures (104) formed on a substrate; an electrically conductive anode structure (108) comprising a first wavelength converting material (118) arranged to cover at least a portion of the anode structure, wherein the first wavelength converting material is configured to receive electrons emitted from the field emission cathode and to emit light of a first wavelength range, and means for forming an hermetically sealed and subsequently evacuated cavity (106) between the substrate of the field emission cathode and the anode structure, including a spacer structure (302, 110) arranged to encircle the plurality of nano structures, wherein the substrate for receiving the plurality of nanostructures is a wafer (102′).
Abstract:
Excimers are formed in a high pressure gas by applying a potential between a first electrode (14, 214) and a counter electrode (25, 226) so as to impose an electric field within the gas, or by introducing high energy electrons into the gas using an electron beam. A phosphor for converting the wavelength of radiation emitted from the formed excimers is disposed within the gas and outside a region (62, 162) where the excimers are expected to be formed, so as to avoid degradation of the phosphor.
Abstract:
Light sources are provided with enhanced low-frequency (e.g., near infrared) emission. Some disclosed embodiments include a filament and at least one re-radiator element. The filament heats the re-radiator element to a steady-state temperature that is at least one quarter of the filament's absolute temperature. As disclosed herein, the increased surface area provided by the re-radiator element provides enhanced IR radiation from the light source. Patterning or texturing of the surface can further increase the re-radiator element's surface area. Various shapes such as disks, collars, tubes are illustrated and can be combined to customize the spectral emission profile of the light source. Some specific embodiments employ a coating on the bulb as the re-radiator element. The coating can be positioned to occlude light from the filament or to augment light from the filament, depending on the particular application. The various re-radiator elements can be positioned inside or outside the bulb.
Abstract:
A flexible display panel including: a flexible substrate including a first region, second regions that extend from the first region and that have a curved surface, and a third region folded towards the second regions; a first display region in the first region of the flexible substrate; a second display region in the second regions of the flexible substrate; a plurality of non-display regions outside the first display region or the second display regions, wherein at least one of the plurality of non-display regions is in the third region of the flexible substrate; and an encapsulation member for encapsulating the first display region and the second display regions.
Abstract:
A cascaded light emitting device. The cascaded light emitting device includes: a base electrode formed of a base electrode material and electrically coupled to a base voltage lead; a top electrode layer formed of a top electrode material and electrically coupled to a top voltage lead; a number of electroluminescent layers arranged between and electrically coupled to the base electrode and top electrode layer; and at least one middle electrode layer formed of a middle electrode material. Each of the middle electrodes is coupled between two juxtaposed electroluminescent layers. The electroluminescent layers include a mixed conductor that luminesces with a peak wavelength.