Abstract:
An electronic device includes a touch screen for a touch sensitive display carried by a portable housing. The electronic device is configured to operate in a high detection threshold mode to determine whether an object is in contact with the touch sensitive display, and operate in a low detection threshold mode to determine whether the object is adjacent to the touch sensitive display, based on lack of detection of the object being in contact with the touch sensitive display. The electronic device is further configured to determine whether the object s in contact with a peripheral edge of the portable housing by determining whether the object is adjacent opposite sides of the touch sensitive display, based on detection of the object being adjacent to the touch sensitive display.
Abstract:
The present disclosure concerns a method of measuring the distance between a device and an object comprising the steps of determination of a first estimated distance based on the time of flight of first light pulses having a first period; determination of a second estimated distance based on the time of flight of second light pulses having a second period different from the first period; determination based on the interval between the first and second estimated distances of whether the device is in a wraparound area among wraparound areas; and if the device is in a wraparound area among wraparound areas, adding to the first estimated distance a compensation having its value depending on the wraparound area.
Abstract:
A debug-enabled processing device includes a processor, a communication transceiver circuit, and a debug support unit. The debug support unit has a plurality of dedicated debug registers to facilitate debugging a software program under execution by the processor. One of the plurality of debug registers is a control register having at least four bits, which are used to enable/disable a plurality of debugging operations. Others of the debug registers include a set of index registers that may be configured to pass data to and from the processor.
Abstract:
An electronic device disclosed herein includes a linear output stage configured to generate an output voltage to an output node as a function of an input voltage, and a buck output stage configured to generate the output voltage to the output node as a function of the input voltage. Control circuitry is configured to enable the linear output stage and disable the buck output stage if a current demanded by a load to maintain the output voltage at a desired level is less than a limit current, and enable the buck output stage and disable the linear output stage a delay period of time after enabling the buck output stage, if the current demanded by the load to maintain the output voltage at the desired level is greater than the limit current.
Abstract:
In an embodiment, a transmitter includes first and second processing blocks, which may each include hardware, software, or a combination of hardware and software. The first processing block is operable to generate a first peak-reducing vector. And the a second first processing block is operable to receive a first data vector, the data vector comprising a plurality of samples, the first data vector having a first peak with a first index and a first magnitude, a second peak with a second index and a second magnitude that is less than the first magnitude, and a first peak-to-average power ratio, and to generate a second data vector having a second peak-to-average power ratio that is lower than the first peak-to-average power ratio by using the first peak-reducing vector.
Abstract:
A database stores updated information concerning protected communications services. A base station for a coexisting, and potentially co-channel, non-protected communications service makes an inquiry of the database requesting an identification of geographically relevant protected services along with the database stored information pertinent to each of those identified protected services. The returned information is processed by the base station to determine what channels are available for use by the non-protected service. An available channel is identified by the base station as the working channel for the non-protected service and the base station initiates a process to establish a communications network using the non-protected service and the selected working channel.
Abstract:
According to an embodiment, a receiver, system and method for channel estimation in a communications system utilizing multiple transmit antennas are provided. The receiver comprises an antenna node operable to receive a signal that includes a superposition of at least a first signal corresponding to a first sequence and a second signal corresponding to a second sequence; and a channel estimator, coupled to the antenna node, operable to correlate the received signal with at least one of the first and second sequences, to determine at least one boundary between at least two waveforms resulting from the correlation, and to calculate using the boundary and the at least two waveforms a first channel response corresponding to the first signal and a second channel response corresponding the second signal. Channel estimates are determined based on determined boundaries and may be smoothed by a Savitzky-Golay filter in the frequency domain. The variance of additive white Gaussian noise (AWGN) may also be estimated.
Abstract:
A method for decoding tail-biting convolutional codes. The method includes initializing a correction depth, selecting a first starting state from a set of encoding states, and initializing a metric value for the selected starting state as zero and the other states as infinity. The input bit stream is read and a Search Depth Viterbi algorithm (SDVA) is performed to determine path metrics and identify a minimum-metric path. The ending state for the minimum-metric path is determined and the output for this ending state is identified as “previous output.” A second starting state is set to the ending state of the minimum-metric path, and symbols equal to the correction depth from the previous output are read. The SDVA is performed on the second set of read symbols to generate a corrected output. A decoded output is generated by replacing symbols at the beginning of the previous output with the corrected output.
Abstract:
A blind carrier frequency offset estimator is based on a single-OFDM-symbol training sequence in multi-user OFDMA uplink. Through multiple access interference modeling and analysis, a virtual user is employed that occupies the all null sub-carriers. By minimizing the energy leakage on the virtual user in term of tentative frequency offsets, the estimator can approach the real frequency offset. The estimator performs only on frequency-domain, simplifies interference calculations, and lowers the rank of the matrix. An iterative computation method is used to approach the real frequency offset.
Abstract:
A method of operating a display includes performing a non-synchronized touch scan pattern on a display with a controller coupled to the display. The non-synchronized touch scan pattern schedules touch scans independent of a refresh rate of the display. Upon the controller detecting a first synchronization pulse from a display controller coupled to the controller and the display, a first pulse-checking timer is started. Upon detecting a second synchronization pulse from the display controller and before the first pulse-checking timer expires, a first display refresh rate for the display is obtained from an interval between the first synchronization pulse and the second synchronization pulse. A synchronized touch scan pattern is performed with the controller, and is scheduled to avoid touch scans coinciding with refreshes of the display performed at the first display refresh rate.