Abstract:
A backlight module can be used in a dual display module and capable of blurring the shadow image produced by the sub display window in the main display window, while the main display window is displaying images, is disclosed. The disclosed backlight module comprises: a light emitting unit, a first frame located on one side of the light emitting unit and a first display window is enclosed by the first frame, a second frame located on the other side of the light emitting unit opposing to the first frame and a second display window is enclosed by the second frame, and a light diffusing plate, wherein the display area of the second display window is larger than the display area of the first display window. Besides, the light diffusing plate has a smooth surface and a rough surface respectively, while the rough surface is facing the light emitting unit.
Abstract:
An array substrate including a substrate, multiple pixels arranged in an array on the substrate, and an alignment film disposed on the pixels is provided. The pixel includes a reflective region, a transmissive region, and a transition region formed between the reflective region and the transmissive region, wherein an included angle between at least one side of the transition region and a rubbing direction of the alignment film is smaller than or equal to 30 degree. In addition, a transflective LCD including the array substrate as described above and a fabricating method of an array substrate is further provided.
Abstract:
The present invention relates to an active matrix display and an image display system using the active matrix display. The image display system includes the active matrix display and a power supply apparatus. The active matrix display includes an active matrix substrate, a reflective layer and a sidewall-protective structure. The reflective layer is formed above the active matrix substrate and has first and second surfaces. The second surface faces the active matrix substrate. The sidewall-protective structure is formed above the active matrix substrate and surrounds the sidewalls of the reflective layer adjacent to the first and second surfaces.
Abstract:
The present invention discloses a system for displaying images, comprising: a light source; a panel including an active area and a peripheral area; a light guide being located at one side of the light source and under the panel, the light guide having a first side facing the panel and a second side opposite to the first side; and a plurality of optical foils, each foil disposed on the first or second side of the light guide, wherein at least one of the optical foil has a hotspot-reducing area in the peripheral area in order to reduce or eliminate a hotspot in front of the light source, wherein the hotspot-reducing area is a cut-out area, a covered area, or combinations thereof.
Abstract:
A system for display images comprising a thin film transistor array substrate is disclosed. The system for display images comprises a substrate having a pixel area, a source/drain region overlying the substrate within an active layer in the pixel area, a bottom electrode overlying the substrate in the pixel area, a top electrode overlying the bottom electrode, a first dielectric layer disposed on the active layer, a second dielectric layer disposed on the first dielectric layer, wherein the second dielectric layer is disposed between the bottom electrode and the top electrode and a gate disposed overlying the active layer, wherein the first and second dielectric layers are interposed between the gate and the active layer.
Abstract:
A process for assembling a camera module comprises the following steps:—placing the substrate (10) on a positioning die (70);—irradiating the lens assembly (30) with parallel rays of light (90);—displacing a lens assembly (30) comprising the convex lens (33) in an axial direction;—measuring the light intensity of light passing through a spot hole (75) by means of a light sensor (80) being accommodated in the positioning die (70);—determining an optimal axial position of the lens assembly (30) on the basis of an obtained light intensity curve;—bringing the lens assembly (30) to the optimal axial position;—removing the positioning die (70); and—attaching an image sensor chip to a bottom surface (12) of the substrate (10).
Abstract:
Disclosed is an LCD display utilizing a frame memory and a lookup table for pixel overdrive. A plurality of pixels is arranged in an array corresponding to the gate lines and the source lines. The frame memory is a memory formed by at least one storage capacitor and at least one thin film transistor in each pixel. Moreover, a compression unit and a decompression unit are coupled with the frame memory. The compression unit outputs compressed gradation data of the present image. The decompression unit outputs decompressed gradation data of the former image.
Abstract:
The invention relates to a method for manufacturing a light emitting display comprising a plurality of light emitting elements on a substrate, wherein at least one delimiting means is provided on or over the substrate for at least partially bounding sites for deposition of a fluid light emitting substance to form the light emitting elements. At least a part of at least one of the delimiting means is repellent to the fluid light emitting substance. The repellent part may comprise a hydrophobic flow barrier. The method has the advantage of an enhanced resolution of light emitting elements, especially if the fluid light emitting substance is deposited by means of inkjet printing and involves different materials for generating different colours of light.
Abstract:
A liquid crystal display device and an electronic device, which provide compensation for the difference of brightness caused by the LC effect to improve the image color fidelity is provided. The present invention provides a source driving method for a LCD device including providing data signals representing images to be displayed at a plurality of sub-pixels corresponding to different display wavelengths within a pixel and sequentially activating the sub-pixels within the pixel, in the order from a sub-pixel corresponding to the shortest display wavelength to a sub-pixel corresponding to longest display wavelength.
Abstract:
A first amorphous silicon layer is formed over a substrate and a second amorphous silicon layer is formed over the first amorphous silicon layer. When a laser annealing process is performed, the second amorphous silicon layer absorbs more laser light than the first amorphous silicon layer does. The first amorphous silicon layer crystallizes into a microcrystalline silicon layer and the second amorphous silicon layer crystallizes into a polysilicon layer. During the laser annealing process, light interference between the first amorphous silicon layer and an underlying buffer layer is eliminated owing to that the second amorphous silicon layer absorbs more laser light. The laser fringe is eliminated. The microcrystalline silicon layer with better crystalline uniformity can serve as an active layer for TFTs in the display area of an OLED display to improve its illumination uniformity.