Abstract:
A system, method and device for brachytherapy treatment verification is described herein. The verification may be in real time and may provide verification of one or more of dose, source position, dwell time and source activity. In one embodiment the invention provides a method for verifying a brachytherapy radiation treatment including processing a distribution of exposure to a brachytherapy radiation source of a two dimensional imaging array to determine a region of high exposure; obtaining one or more distribution of exposure profiles through the region of high exposure; determining a region of high value in the one or more distribution of exposure profiles; and using the determined region of high exposure and/or high value to calculate one or more brachytherapy radiation source position and/or one or more brachytherapy radiation source distance to thereby verify at least a part of the brachytherapy radiation treatment.
Abstract:
Vending accommodation and accessibility is described in connection with completing transactions by a machine. In certain aspects, the method includes entering an accommodation mode based on a user selection, displaying an accommodation menu comprising at least one selection button and a list of items available for vending, and announcing a selected item of the list of items available for vending. In other aspects, the method includes determining whether an item has been selected for vending based on touching at least one selection button according to instructions to a relative position of the selection button on a display screen. When determining that an item has been selected for vending, the method further includes prompting for payment to complete a transaction for the item.
Abstract:
The present invention relates to a system and method of utilizing a vending machine to make a charitable donation. A vending machine offering product/service for sale and a donation transaction for selection by the user. Payment of the donation amount is received at the vending machine and transmitted to the charitable organization.
Abstract:
A method and apparatus for identifying ambient signal data in a test signal data set. A cumulative amplitude distribution of data elements is identified in the test signal data set in order by amplitude values. The data elements comprise frequency values and corresponding amplitude values. A subset of data elements from the test signal data set is identified. The subset of data elements comprises the data elements with the amplitude values greater than a first threshold value. The data elements in the subset of data elements are identified wherein a difference between the amplitude values of adjacent data elements in the cumulative amplitude distribution of data elements is greater than a second threshold value.
Abstract:
A communication network is operated by obtaining a subscription at a wireless network from at least one device for a rebroadcast of streaming media and rebroadcasting the streaming media to the at least one device using the wireless network responsive to obtaining the subscription.
Abstract:
A communication network is operated by obtaining a subscription at a wireless network from at least one device for a rebroadcast of streaming media and rebroadcasting the streaming media to the at least one device using the wireless network responsive to obtaining the subscription.
Abstract:
A fractional-N based Automatic Frequency Control (AFC) system for a mobile terminal is provided. In general, automatic frequency control is implemented in a frequency synthesizer to correct or compensate for a frequency error of an associated reference oscillator. The frequency synthesizer includes a first fractional-N phase-locked loop (FN-PLL) generating a baseband clock signal used by a baseband processor of the mobile terminal, a second FN-PLL generating a receiver local oscillator signal used by a receiver of the mobile terminal to downconvert a received radio frequency signal to a desired frequency, and a translational PLL generating a transmitter local oscillator signal used by a transmitter of the mobile terminal to provide a radio frequency transmit signal. The automatic frequency control is performed by applying a digital correction value, which is preferably multiplicative, to fractional-N dividers of the first and second FN-PLLs.
Abstract:
An image display system has a multi-gate thin film transistor (TFT) disposed on a transparent substrate. The multi-gate TFT includes a silicon film layer, a first electrode and a reflecting layer. The silicon film layer is formed on the transparent substrate and has a first crystallization zone and a second crystallization zone, which are not adjacent to each other. A grain size of the first crystallization zone is smaller than a grain size of the second crystallization zone. The first electrode corresponding to the first crystallization zone is disposed on the silicon film layer. The reflecting layer corresponding to the second crystallization zone is disposed on the transparent substrate. The silicon film layer is disposed on the transparent substrate and the reflecting layer.
Abstract:
A system for displaying images comprises a thin film transistor (TFT) device comprising first and second active layers disposed on a substrate in the driving circuit region and in the pixel region, respectively. Each active layer comprises a channel region, a source/drain region and a lightly doped region formed therebetween. Two gate structures are disposed on the first and second active layers, respectively. Each gate structure comprises a stacked first and second gate dielectric layers and a gate layer, and the second gate dielectric layer has a length shorter than that of the first gate dielectric layer but longer than the gate length of the gate layer. The lightly doped region of the first active layer has a length different from that of the second active layer.
Abstract:
The invention discloses an organic electroluminescent device includes a substrate. The substrate includes a first control area and a second control area, a polysilicon active layer disposed on the first control area, and a first conductivity type source/drain area disposed in the polysilicon active layer. A first dielectric layer is disposed on the polysilicon active layer serving as a first gate dielectric layer, a first gate and a second gate is disposed on the polysilicon active layer and the second control area, respectively, wherein the first gate and the first conductivity type source/drain area constitute a first conductivity type thin film transistor serving as a switch element. A second dielectric layer disposed on the first gate and the second gate serves as a second gate dielectric layer, a micro-crystal silicon active layer disposed over the second gate.