Abstract:
A baler has winding elements for forming a bale of crop. A formed bale is bound with binding material such as twine or wire from a binding mechanism. When a bale is fully formed, a cable is pulled by the operator of the tractor towing the baler which actuates the binding mechanism and simultaneously operates a change-speed gear to increase the speed of the winding elements. The bale thus rotates faster during binding than it does while it is being formed. This reduces time required for binding. When the bale has been bound, it is discharged through a door which pivots upwards for this purpose. Pivoting of the door pulls a further cable which returns the change-speed gear to the lower speed position and actuates the binding mechanism so that the next bale can be formed. The bale chamber is substantially cylindrical with rotable elements around the interior of its curved sides. One group of such elements is pivotable about a pivot axis adjacent the baler's pick-up device and bears on the forming bale to assist in its formation and ensure it is sufficiently compressed. The individual rotatable elements are rods or tubes or a plurality of same spaced from and arranged to rotate about a common axis, such plurality being parallel to coincide with a cylindrical surface, or helical to coincide with a hyperboloidal surface relative to its axis of rotation.
Abstract:
A round baler includes a base and rear frame. A first set of rollers is mounted in the base frame and extends transversely thereof. A pair of arms are pivoted on the rear frame, and a second set of rollers is carried by the arms extending transversely between the arms. The arms are movable between a bale starting position and a full bale position, and the second set of rollers cooperate with at least part of the first set of rollers to define a bale starting chamber that is vertically elongated when the arms are in the bale starting position.
Abstract:
A large round baler comprises a baling chamber and a door that is arranged in the rear area of the baling chamber and includes a pair of wings mounted to opposite sides of the baler so that each is displaceable about an upright pivot axis between a closed position, in which the wings extend inwardly along the rear of the baling chamber, and an open position, in which a passage is defined through which a finished bale can pass after being ejected from the baling chamber. The baler may be of a type including a carrier for bale-forming devices that can be displaced in the baling chamber, independently from the door, between a bale-forming position and a bale ejection position, and that the door, when closed, blocks direct access to the carrier and the devices for forming the bale.
Abstract:
A baling chamber for a large round baler includes a discharge gate having opposite side walls which meet respective side walls of the main frame along a line of separation that inclines downwardly and to the rear from top to bottom. The bottom of the baling chamber is defined in part by a bottom conveyor which slopes downward to the rear from a front end which delimits a lower side of an inlet through which crop is fed into the baling chamber. The discharge gate carries a lower front roll that supports an endless tension element arrangement and that is itself supported on a tensioning arm arrangement that pivoted to the discharge gate for movement against the resistance of a yieldable spring arrangement so as to permit the lower front roll to move rearwardly from a first position adjacent the inlet, which it occupies at the beginning of bale formation, as the bale grows.
Abstract:
A baling chamber for a large round baler includes a discharge gate having opposite side walls which meet respective side walls of the main frame along a line of separation that inclines downwardly and to the rear from top to bottom. The bottom of the baling chamber is defined in part by a bottom conveyor which slopes downward to the rear from a front end which delimits a lower side of an inlet through which crop is fed into the baling chamber. The discharge gate carries a lower front roll that supports an endless tension element arrangement and that is itself supported on a tensioning arm arrangement that pivoted to the discharge gate for movement against the resistance of a yieldable spring arrangement so as to permit the lower front roll to move rearwardly from a first position adjacent the inlet, which it occupies at the beginning of bale formation, as the bale grows.
Abstract:
A roller in the form of a hollow cylinder is for use in harvesting machines and has inner support plates provided within the roller. A plurality of the innermost support plates are connected together by at least one axle section so as to prevent lateral displacement.
Abstract:
Round balers include bale shaping elements which define the boundary of the bale forming chamber. One part of the bale shaping elements can be swung by an attached structural arm into the bale forming chamber. The amount the elements are swung into the chamber is defined by the tensional forces on a spring. These tensional forces can be manually adjusted using a device, in a stepwise manner. One embodiment includes a handheld lever and a stepped shift-gate.
Abstract:
A round baler for forming crop material into cylindrical bales. The baler has a main frame, a pair of side walls, a crop pickup mounted on the main frame, and a tailgate pivotally connected to the main frame. The tailgate is operative between a closed position during which a bale is being formed in an expandable chamber, and an open position during which a formed bale is being discharged from the chamber. A sledge assembly, pivotally mounted on the main frame for movement between a bale starting position and a full bale position, has crop engaging transverse rollers for urging the crop material along a spiral path in the chamber for starting and forming a bale. A apron is supported along a continuous path on the main frame and tailgate by a plurality of rotatable guide members. The path has an inner course that cooperates with the sledge rolls on the sledge assembly to define moveable walls of the chamber. A drive roll moves the apron along the continuous path. A take up assembly, affixed to the sledge assembly, moves therewith between the bale starting position and full bale position to provide slack in the apron under conditions where the tailgate is moved from its closed position to its open position, thereby causing the drive roll to become disengaged from the apron.
Abstract:
A round baler has a bale chamber, a plurality of bale forming elements which limit a periphery of the bale chamber so that a volume of the bale chamber can be increased during a formation of a bale by the bale forming elements, a common lever structure on which the bale forming elements are arranged, the lever structure formed as a turnable lever structure supports the bale forming elements so that at least one of the bale forming elements, when the lever structure is turned outwardly, still extends inwardly into a peripheral circle formed by the other of the bale forming elements.
Abstract:
A round baler having a frame with opposing side walls, conveying apparatus including a series of inwardly facing moving surfaces defining a baling chamber for forming cylindrical bales of crop material and a feeder for feeding crop material into the chamber. Rotatable transverse rollers are mounted between the opposing side walls of the frame for operatively supporting the conveying apparatus, and a journal assembly having a bearing arrangement for mounting the rollers. The bearing arrangement includes a generally cylindrical stationary first race and a concentrically disposed generally cylindrical rotatable second race between which races a bearing cavity is formed for seating a series of bearings housed between said first and second races. A unique shield assembly encloses the cavity and prevents the intrusion of unwanted debris.