Abstract:
Apparatus and method for treating by injecting a fluid treatment material into porous structures such as those formed from concrete, brick, stone, marble, and wood. The apparatus includes an applicator head having an inner chamber and an outer chamber surrounding the inner chamber both of which chambers are connected with a vacuum source. The inner chamber is also connected with a source of pressurized liquid treatment material. The method is for treating such porous structures and includes the steps of engaging the structures with the applicator head, drawing a vacuum on at least the outer chamber to secure the applicator head to the structure, and supplying the pressurized liquid treatment material to the inner chamber to impregnate the structure to be treated.
Abstract:
A method and apparatus for applying a fluid preservative to wood or wood products has a work tank for maintaining a predetermined concentration of preservative in the fluid. The work tank is equipped with a heater to keep the temperature of the fluid and the preservative in the work tank at a predetermined level. Hot fluid and preservative is drawn under a vacuum, initially from the work tank. On filling a pressure vessel, a pressure pump then supplies the preservative and fluid mixture under pressure to the pressure vessel in which the wood or wood product is being treated. As the treatment process depletes the preservative in the fluid, through absorption in the wood, the depleted fluid is circulated back to the work tank where it is heated and more preservative is added to restore the concentration of preservative in the fluid to a desired level. The fluid, replenished with preservative, is then pumped into the pressure vessel. In this way a more uniform distribution of preservative in a desired concentration is achieved in the treated wood or wood product.
Abstract:
A method for treating wood products is provided wherein wood products are treated in an aqueous solution of a silicate, a rheology modifier, a wetting agent and, optionally, borax and/or a bacteriocide or fungicide; the aqueous solution having a pH of at least 9.0, preferably, a pH of 10-14, and most preferably, 13.0. A suitable dye can be added to the aqueous solution to color the wood product. The present invention is also directed to an aqueous solution for pressure treating wood and a wood product prepared according to the method of the present invention.
Abstract:
A sodium silicate polymerization method was used to incorporate sodium silicate and/or other water soluble inorganic fire retardants into an insoluble matrix. By using a vacuum/pressure technique, a water soluble sodium silicate/borate mixture was forced into the interior of various cellulosic materials, then was heat polymerized into an insoluble fire retardant matrix. This produced a dual action fire retardant material also with the following properties: moisture resistant, weather proof, and improved strength. Water insoluble forms of sodium silicate and borates have not been possible until now. This process and testing was then repeated with six other water soluble fire retardant combinations, making them similarly water insoluble. The process was used to incorporate water soluble substances into the intercellular structures of cotton fibers, polymerized to the insoluble form in the interior, thus becoming trapped inside the fibers, producing weavable fibers, that were flexible, very strong and highly fire retardant. Because some of the best fire retardants are water soluble inorganic compounds, from both fire retardant and environmental considerations, until now, the problem of water solubility has greatly restricted the widespread use of the water soluble inorganic fire retardants. The present invention provides a very promising approach for solving this problem while providing the added properties of increased strength. It was further found that chemicals and substances could be forced to penetrate cellular interiors, and further that reactions could be caused to occur within the cells by the choice of materials, chemicals, and conditions of the infusion process.
Abstract:
Fire retarding and smoke inhibiting aqueous composition and a method for a one-step impregnation of aqueous-absorbable--and normally inflammable materials, such as wood, paper and textiles, said composition comprising ammoniumphosphates, phosphoric acid, water soluble metal salts with ability to form water insoluble salts with phosphate ions and/or ammoniumphosphate ions, and other optional additives.The composition comprises in combination:0.5-90% by weight monoammoniumphosphate and/or diammoniumphosphate,0.1-30% water-soluble metal salts with ability to form water insoluble salts with phosphate ions and/or ammoniumphosphate ions,1-20% by weight acid especially phosphoric acid (85%),1-15 % by weight dicyandiamide, andoptionally up to 5% by weight additivesin a total concentration of from 1 to 50% by weight with respect to the total weight of the aqueous solution, whereby phosphoric acid and dicyandiamide are present in the form of the reaction product guanylureaphosphate.
Abstract:
A process for treating wood involving impregnation of the wood with a preservative followed by the heat-fixation of the preservative in the wood using a pre-heated aqueous heat transfer fluid to effect the heat fixation of the preservative. The process particularly relates to steps which are taken to reduce the level of any contamination of the aqueous heat transfer fluid resulting from any wood extractives, any unfixed preservative and/or any particulate matter (i.e. "sludge") that may be present in the fluid. The contamination is preferably reduced by incorporating in the heat transfer fluid an oxidant which will preferentially oxidize any wood extractives resulting from the contact of the treated wood with the fluid without any significant reaction occurring between the oxidant and the preservative. Useful oxidants include inorganic chlorate salts such as sodium chlorate.
Abstract:
A method for treating lumber using a treatment composition having white mineral oil. The lumber is submerged in the treatment composition at atmospheric pressure or at an elevated pressure. The white mineral oil replaces moisture removed from the lumber, and thus lubricates the cell structure of the wood. The method is particularly well suited to the treatment of wood flooring blocks, since the white mineral oil is non-toxic and does not pose health or environmental hazards. A fungicide may be added to the treatment composition to inhibit the formation of mold.
Abstract:
An improved process for the fixation of preservatives in wood is disclosed which initiates the fixation process in the fixation vessel by the application of sufficient pressure to substantially obviate a thermal expansion effect of the treated wood; contacts the treated wood in the fixation vessel with an aqueous liquid heating medium preheated to a temperature of about 130.degree. to no more than about 200.degree. F. for a period of thirty minutes to about two hours; removes the aqueous liquid heating medium from the fixation vessel; applies a vacuum in the range of 10-30" Hg for a duration of up to about 30 minutes; and rinses the treated and fixed wood in said fixation vessel with heated clean water, heated to a temperature of about 200.degree. F.
Abstract:
Fouling of marine structures such as boats by shell bearing sea animals which attach themselves to such structures, such as barnacles, is inhibited by coatings containing lipid soluble, non-toxic, biodegradable substances which prevent the animals from sitting down on the structures. These substances attack the nervous system of the barnacle, neutralize the glue extruded by the barnacle, and otherwise prevent the barnacles from attaching themselves to surfaces immersed in the aqueous marine environment while being benign to the environment. A preferred inhibitor is pepper containing capsaicin. The inhibitor is incorporated into standard marine paints, impregnants, varnishes and the like.
Abstract:
A wood preservative composition which contains poly ethylene oxide along with poly vinyl pyrrolidone is applied to wood in a four-step process. In the first step, moisture and excess resin are removed from the wood. In the second step, the preservative composition is applied to the wood by pressure injection. In the third step, the container for the wood is drained and excess solution is transferred to a holding tank. In the fourth step, a catalyst, either heat or a low-pH composition, is applied to the wood to cause chemical bonding of the preservatives within and with the wood. As a part of the fourth step, excess moisture is removed from the wood by subjecting the wood to a vacuum to draw out excess moisture and then subjecting the wood to a flow of desiccated air which absorbs the moisture.