摘要:
A sodium silicate polymerization method was used to incorporate sodium silicate and/or other water soluble inorganic fire retardants into an insoluble matrix. By using a vacuum/pressure technique, a water soluble sodium silicate/borate mixture was forced into the interior of various cellulosic materials, then was heat polymerized into an insoluble fire retardant matrix. This produced a dual action fire retardant material also with the following properties: moisture resistant, weather proof, and improved strength. Water insoluble forms of sodium silicate and borates have not been possible until now. This process and testing was then repeated with six other water soluble fire retardant combinations, making them similarly water insoluble. The process was used to incorporate water soluble substances into the intercellular structures of cotton fibers, polymerized to the insoluble form in the interior, thus becoming trapped inside the fibers, producing weavable fibers, that were flexible, very strong and highly fire retardant. Because some of the best fire retardants are water soluble inorganic compounds, from both fire retardant and environmental considerations, until now, the problem of water solubility has greatly restricted the widespread use of the water soluble inorganic fire retardants. The present invention provides a very promising approach for solving this problem while providing the added properties of increased strength. It was further found that chemicals and substances could be forced to penetrate cellular interiors, and further that reactions could be caused to occur within the cells by the choice of materials, chemicals, and conditions of the infusion process.
摘要:
The flame-resist properties of natural and synthetic polyamide fibres, especially wool and wool blends, are improved by depositing in the fibres an organic chelate or fluoride complex of titanium, preferably to the extent of 0.2 - 2.5% calculated as titanium dioxide. The complexes may be dissolved as such in an aqueous medium and applied by spraying, padding or by exhaustion from a bath. Alternatively the complexes may be formed in situ in the aqueous medium by adding a complexing agent to a watersoluble titanium compound or on the fibre, as by treating with a fluoride solution fibres already treated with a titanium compound, which may itself be a chelate complex. Where the titanium complex is applied from a bath a dye can be applied to the fibres from the same bath, either simultaneously or as a separate step.
摘要:
It is intended to provide a method of producing a hollow construct, which may be in various shapes such as a fiber or a film as well as in various sizes and has chemical resistance, made of a fluorinated hydrocarbon polymer, a fluorinated carbon polymer or a polymer carrying a nitrogen-containing group, a silicon-containing group, an oxygen-containing group, a phosphorus-containing group or a sulfur-containing group having been introduced into the above-described polymer; and a hollow construct obtained by this method. The method of producing a hollow construct as described above is characterized by comprising the fluorination step wherein a construct made of a hydrocarbon polymer or a polymer carrying a nitrogen-containing group, a silicon-containing group, an oxygen-containing group, a phosphorus-containing group or a sulfur-containing group having been introduced into the above-described polymer is brought into contact with a treating gas containing fluorine under definite conditions and thus the treating gas is allowed to penetrate from the outer surface of the construct toward the inside thereof to thereby fluorinate the construct excluding the core part, and the removal step wherein the core part having been not fluorinated as described above is removed.
摘要:
Flame-resistant metal-containing polyacyloxalamidrazone filaments and a process for their production in which the filaments are treated with one or more solvent-soluble compounds of at least one of the metals zinc, tin, cadmium, barium, strontium, calcium, antimony and tantalum for a period of time sufficient to render the filaments resistant to flame.