Abstract:
A cyclic adsorption process is provided in which two zones are employed--an adsorption zone and a heat storage zone. A fluid stream containing a solute to be removed therefrom is passed through the adsorption zone and the effluent is then passed through heat storage zone. The conditions under which the stream is passed through the adsorption zone are selected so that the rate of progression of the heat transfer front and mass transfer front are substantially equal. This results in an optimum temperature of the effluent stream for efficient heat recovery in the heat storage zone. During regeneration of the adsorbent, a fluid regenerating stream is passed through the heat storage zone where it is partially heated. At a point between the adsorption zone and the heat storage zone the regenerating fluid stream is further heated, via an additional heat source, and passed through the adsorbent zone. The amount of additional heat is sufficient to effectively desorb the adsorbent. Alternatively, of course, a pressure reduction and a combination of heat addition and pressure reduction may be employed to desorb the adsorbent.
Abstract:
A process for open-cycle air conditioning which affords economy of external power both with respect to cost and energy consumption by providing a low-temperature heater and a high-temperature heater for regenerating the sensible heat exchanger and desiccant when the apparatus is used for cooling and the enthalpy exchanger when the apparatus is used for heating. The power source for the low-temperature heater can utilize solar energy, waste boiler heat, waste process heat, nuclear reactor heat and the like. The power source for the high-temperature heater can be an open flame burner or other conventional heater.
Abstract:
Efficiency of an open-cycle air conditioning apparatus and method for heating and cooling is improved and the economy of external power is increased both with respect to cost and energy consumption by providing a combination of a primary heater and a secondary heater for heating the regeneration stream for regenerating the desiccant means in the air conditioning apparatus. The thermal source for the primary heater may utilize waste heat or solar energy which is transferred to a solid phase thermal storage means by a gaseous phase heat exchange medium. The thermal energy may be transferred from the thermal storage means to the regeneration stream of the open-cycle air conditioning apparatus either directly by passing the air stream over the solid phase thermal storage means or indirectly by passing liquid in an enclosed system through the solid phase thermal storage means and the regeneration stream.
Abstract:
Efficiency of an open-cycle air conditioning apparatus for heating and cooling is improved and the economy of external power is increased both with respect to cost and energy consumption by providing a combination of a low temperature heater and a high temperature heater for regenerating the desiccant means in the air conditioning apparatus. The power source for the low temperature heater can utilize solar energy, waste energy, and the like. The power source for the high temperature heater, when needed, can be an open flame burner of the like. In the cooling mode of operation, the desiccant means is partially or totally regenerated by a relatively lower temperature air stream and, if necessary, regeneration may be completed by a relatively higher temperature air stream, dependent upon ambient conditions.
Abstract:
An exchanger for removing moisture from a gas comprising a fibrous carrier in sheet form preferably arranged in layers and provided with passageways extending from end to end of the exchanger and supplied with two moisture absorbing substances, viz. a water soluble salt and crystalline zeolite, arranged in two separate zones in the direction of travel of the gas through the passageways.