Abstract:
A desiccant system, particularly adapted for a method of operation of an open-cycle air-conditioning system, comprising the use of thin sheets or layers of fibrous materials, such as a ''''paper'''' of cellulose, asbestos, fiberglass, polyesters, Teflon, Kel-F, or nylon, which have been impregnated, during their manufacture, with varying amounts of finely powdered, solid, natural or synthetic, crystalline, alkali metal or alkaline earth metal alumino-silicates, such as zeolites or ''''molecular sieve'''' materials. The impregnated papers are then formed into moisture transfer bodies, such as an L-wheel formed of corrugated paper rolled up so that the corrugations form axial passages through the wheel. A wheel of such construction can more effectively dry the ambient air without degradation by combustion products or desiccant weeping to a much lower level of humidity than prior art desiccant systems. Also, based on the vapor pressure and kinetic data and the energy required to regenerate the L-wheel, a system according to our invention would be significantly improved over the prior art and result in a higher coefficient of performance for the system, an increased depth of drying, and a reduction in wheel size. The system is particularly applicable to drying, for example, humid air having a 92* F. dry bulb temperature and an 80* F. wet bulb temperature to a moisture content of less than .003 lb. H2O/lb air.
Abstract:
An improved adiabatic saturation cooling machine of the opencycle type and method of operation in which the capacity of the machine is increased by routing by-pass streams of air through either the S-wheel alone or both the S- and the L-wheel. The amount of these by-pass streams are from 0 to 100 percent that of the main exhaust stream of air passing from the room through the S-wheel. In the first embodiment the by-pass air is outside air and is directed to the regenerative ''''side'''' of the S-wheel. Such a by-pass stream ranging from 95*F to 80*F will cool the air from the S-wheel an additional 2.6* to 5.9*F below that capable by the room air exhaust stream alone. The outside air by-pass stream may be passed directly through the S-wheel or pretreated by passing through an E-pad. In the second embodiment, where there is sufficient air supplied to the burner section to regenerate the L-wheel, a portion of the primary room exhaust air stream is recirculated as a by-pass stream to the input face of the L-wheel. A third embodiment is directed to incoming air bypassing the E-pads from the cooling side of the S-wheel. A fourth embodiment is directed to a return by-pass for directing the first stream of incoming L-wheel air back out the regenerative ''''side'''' of the L-wheel.
Abstract:
An improved adiabatic saturation cooling machine of the opencycle type and method of operation in which the capacity of the machine is increased by routing by-pass streams of air through either the S-wheel or the L-wheel. The amount of these by-pass streams are from 0 to 100 percent that of the main exhaust stream of air passing from the room through the S-wheel. In the first embodiment the by-pass air is outside air and is directed to the regenerative ''''side'''' of the S-wheel. Such a by-pass stream ranging from 95* to 80*F will cool the air from the S-wheel an additional 2.6 to 5.9*F below that capable by the room air exhaust stream alone. The outside air by-pass stream may be passed directly through the S-wheel or pretreated by passing through an E-pad. In the second embodiment, where there is sufficient air supplied to the burner section to regenerate the L-wheel, a portion of the primary room exhaust air stream is recirculated as a by-pass stream to the input face of the Lwheel. A third embodiment is directed to incoming air bypassing the E-pads from the cooling side of the S-wheel. A fourth embodiment is directed to a return by-pass for directing the first stream of incoming L-wheel air back out the regenerative ''''side'''' of the L-wheel.
Abstract:
The application discloses an improved environmental control unit using in unitary combination a heat pipe as the heat source for the regeneration of the L-wheel. The heat pipe contains sodium metal which is vaporized by heating one end of the pipe in a firebox remote from the environmental control unit. The other end of the heat pipe extends into the heating section just upstream from the L-wheel. There, the air passing over the heat pipe surface, which optionally may be finned, causes sodium vapor in the pipe to condense, thus giving up its latent heat of condensation to the air stream, heating it to a temperature sufficient to dry the wheel. The improved heat pipe is efficient, safe, easily controllable and self-adjustable.
Abstract:
A low-noise method and apparatus for fracturing concrete and other solid materials by coupling microwave energy into the material in a fashion such as to generate independent heat patterns using at least two or more microwave applicator horns that are spaced apart from each other. The power density of the microwave energy coupled into the solid material is established and maintained below a predetermined threshold level above which violent and explosive type reactions occur. The spaced heat patterns or zones produced cause the heated material to expand, so as to place high tensile forces or stresses on the unheated material between the heat patterns. These forces or stresses cause failure to occur between the heat patterns, and ultimately across the heat patterns themselves.
Abstract:
Improved floating seal constructions for use in conjunction with rotary regenerative devices involved in fluid handling apparatus, more specifically for rotary regenerative heat and moisture exchangers useful in environmental air conditioning units, dryers and the like. Specific embodiments involve use of a silicone rubber flexure member carrying a Teflon rubbing strip or a floating radial T-bar having Teflon rubbing buttons. Another embodiment employs a ribbon bow spring as the flexure member, and is particularly useful for high temperature operations.
Abstract:
Efficiency of an open-cycle air conditioning apparatus for heating and cooling is improved and the economy of external power is increased both with respect to cost and energy consumption by providing a combination of a low temperature heater and a high temperature heater for regenerating the desiccant means in the air conditioning apparatus. The power source for the low temperature heater can utilize solar energy, waste energy, and the like. The power source for the high temperature heater, when needed, can be an open flame burner of the like. In the cooling mode of operation, the desiccant means is partially or totally regenerated by a relatively lower temperature air stream and, if necessary, regeneration may be completed by a relatively higher temperature air stream, dependent upon ambient conditions.