摘要:
A diffractive optical element includes first and second optical members which are stacked. The first optical member includes a diffraction grating in which a plurality of raised portions each having a vertical surface and a surface inclined to the vertical surface are arranged. The second optical member includes a diffraction grating in which a plurality of recessed portions are arranged, to which the raised portions are fitted. The diffraction grating of the first optical member and the diffraction grating of the second optical member are in close contact with each other. A ridge portion of the raised portion defines a curved surface. A curvature radius R (μm) of the curved surface, a pitch P (mm) of the raised portions, and a refractive index difference Δnd between the first and second optical members satisfy a predetermined relationship.
摘要:
An imaging device is presented for use in an imaging system capable of improving the image quality. The imaging device has one or more optical systems defining an effective aperture of the imaging device. The imaging device comprises a lens system having an algebraic representation matrix of a diagonalized form defining a first Condition Number, and a phase encoder utility adapted to effect a second Condition Number of an algebraic representation matrix of the imaging device, smaller than said first Condition Number of the lens system.
摘要:
A method and system for synthesizing a desired light beam including calculating a two-dimensional light filter for an optical element, the two-dimensional light filter being such that the optical element produces under free space propagation, in response to illumination thereof, a three-dimensional light distribution that approximates the light distribution of the desired light beam, and illuminating the optical element.
摘要:
A photographic facsimile of a line image at a predetermined orientation is illuminated by a collimated monochromatic light source to produce a diffraction pattern. The diffraction pattern is focussed by a converging lens to image the Fourier transform of the line image on a spatial frequency plane. The image in the spatial frequency plane is applied to a detector for measuring the spatial power distribution as a function of the spatial frequency. The line image is then reoriented in the image plane, and successive measurements made as the image is rotated in the image plane. Resolution is quantified in the spatial frequency plane as the magnitude of a selected signal as a function of displacement (i.e, spatial frequency). By simulating selected imaging components and generating a resultant line image, the resolution of any imaging system component may be measured.
摘要:
An apparatus is provided for directly observing with the unaided eye, particles one micron and smaller in diameter, in which a source of light is adapted with a converging lens which collects the light and causes the incident beam to come to a point focus, and when appropriately viewed from a common angle to the light source, light source itself being obscured from sight, light in the area of convergence becomes discernible and scattering of such light by individual particles is then observable when such size particles are present.
摘要:
A periodic optimization method for a diffractive optical element includes converting coordinates of individual target spots of a target spot array into angular spectrum coordinates, selecting an initial period, calculating diffraction orders of individual target spots, rounding the diffraction order, calculating the coordinates of actual projection spots by using the rounded diffraction orders, calculating evaluation indicator of period optimization, adjusting the period, and repeating the steps, and comparing the evaluation indicators to determine an optimal period for the diffractive optical element. With the periodic optimization method, an actual spot array is made to match a target spot array to the greatest possible extent with a small amount of calculations, thereby improving the design quality and accuracy of a diffractive optical element.
摘要:
A method of performing coherent transformations of optical fields includes forming a far field distribution of the input optical field. A fraction of the formed far field is diffracted by producing localized discontinuities within said far field. A Fraunhofer diffraction pattern of the diffracted optical field is formed. The Fraunhofer diffraction pattern is modified by producing localized optical path differences within the Fraunhofer diffraction pattern. The transformed output optical field is produced in the far field with respect to the modified Fraunhofer diffraction pattern.
摘要:
An optimized design method for manufacturing a Fresnel grating is disclosed, including the following steps: (1) making a Fresnel surface type of the Fresnel grating equivalent to a curved surface type, and determining, based on the curved surface type to which the Fresnel surface type is equivalent, an optical path difference function of the Fresnel grating: Φ (λ)= − +Nmλ; and (2) determining a Fresnel grating parameter that minimizes a function value of the optical path difference function, so as to manufacture a Fresnel grating that has an aberration elimination effect. The manufactured Fresnel grating may effectively eliminate a portion of aberrations of the Fresnel grating, and increase a resolution of a spectrometer.
摘要:
A method of performing coherent transformations of optical fields includes forming a far field distribution of the input optical field. A fraction of the formed far field is diffracted by producing localized discontinuities within said far field. A Fraunhofer diffraction pattern of the diffracted optical field is formed. The Fraunhofer diffraction pattern is modified by producing localized optical path differences within the Fraunhofer diffraction pattern. The transformed output optical field is produced in the far field with respect to the modified Fraunhofer diffraction pattern.
摘要:
A grating coupler couples a waveguide to a beam and is formed of patterned shapes in a first and second layer of planar material, the shapes embedded in background material, the layers separated by less than one wavelength. The shapes are organized as a plurality of adjacent unit cells arranged along a direction of propagation of light with each unit cell including a shape of the first material and a shape of the second material, each unit cell having design parameters including a period, a width wb of the shape of first planar material, a width wt of the shape of second planar material, and an offset between the shapes. The coupler has a directivity ratio D is at least 10 dB between “up” and “down” radiation; and unit cells differ in at least one parameter selected from period, wb, wt, and offset to provide a predetermined beam shape.