Abstract:
An example method involves rerouting a logical circuit from a first set of switches to a second set of switches to communicate data between network devices without breaking the logical circuit. The logical circuit includes variable communication paths, and the second set of switches are to form a route associated with the variable communication paths that is not predefined and that is dynamically defined at a time of automatic rerouting. The example method also involves detecting a failure of the logical circuit based on at least one of a committed information rate or a committed burst size having been exceeded. In addition, the data is rerouted from the logical circuit to a logical failover circuit in the data network in response to detecting the failure of the logical circuit. The logical failover circuit includes an alternative communication path to communicate the data.
Abstract:
Systems and techniques for capturing audio and delivering the audio in digital streaming media formats are disclosed. Several aspects of the systems and techniques operate in a cloud computing environment where computational power is allocated, utilized, and paid for entirely on demand. The systems and techniques enable a call to be made directly from a virtual machine out to a Public Switch Telephone Network (PSTN) via a common Session Interface Protocol (SIP) to PSTN Breakout service, and the audio to be delivered onward to one or more Content Delivery Network (CDN). An audio call capture interface is also provided to initiate and manage the digital streaming media formats,
Abstract:
Systems, devices, software, hardware and networks adapted and arranged for monitoring and correcting faults in networked media player systems that include electronic displays are provided. After detection or notification of a fault in at least one networked media player in a network of at least two, or N, media players operationally connected to electronic displays, the invention provides an alternate source of signal to the affected display. In some preferred embodiments, the invention utilizes at least one additional, or N+1, media player as a backup to substitute for the failed media player. Reconfiguration of the faulted media player by means of the N+1 backup networked media player advantageously increases the reliability and efficiency of ongoing maintenance of digital visual systems operating in commercial and other environments.
Abstract:
A system and method for automatically cloning or migrating a computing appliance while maintaining its operational state. A configuration bundle that includes configuration data, software revision level and a list of system updates is used to recover or duplicate a device's operation state. The system and method can also be utilized to migrate a computing appliance between different operating system while maintaining or replicating the previous operational state.
Abstract:
A method and system are provided for automatically rerouting logical circuit data from a physical circuit failure in a data network. When a failure in a logical circuit is detected, a label or services name associated with the logical circuit is automatically associated with a logical circuit identifier utilized for identifying the logical circuit in the 10 data network. Once the logical circuit is associated with the logical circuit identifier, the logical circuit data may be automatically rerouted to a “failover network,” thereby minimizing lost data until the failure in the logical circuit is resolved. The logical failover circuit may be an already existing logical circuit provisioned over a dedicated backup physical circuit in the data network.
Abstract:
A plurality of local network groups of computers (102) are coupled together by a network (104). Independent processing systems that execute a single operating system are coupled together by a network (220) to form the local network groups. The independent processing systems may have more than one CPU (202). One or more of the independent processing systems may share power, cooling and a housing, thereby forming a common fault processor group (200). An application is written to execute across multiple independent processing systems and common fault processor groups. That is, the application runs in many instances that each run on independent processing systems. The multiple instances of the application provide some measure of high availability by using N+K sparing or the like. The application is for example, call processing or radio control. A processor notification list (304) keeps track of the independent processing systems that cooperatively provide an application. The independent processing systems monitor state information for independent processing systems on its processor notification lists. Also, the independent processing systems exchange messages periodically with independent processing systems on its processor notification list. The failure to receive a message is noted as a failure that requires recovery.Multiple high availability software systems are permitted to coexist under a single operating system by virtue of a new software layer that coordinates initialization and requires registration of all high availability software.
Abstract:
A method and system are provided for automatically rerouting logical circuit data from a physical circuit failure in a data network. When a failure in a logical circuit is detected, a label or services name associated with the logical circuit is automatically associated with a logical circuit identifier utilized for identifying the logical circuit in the data network. Once the logical circuit is associated with the logical circuit identifier, the logical circuit data may be automatically rerouted to a “failover network,” thereby minimizing lost data until the failure in the logical circuit is resolved. The logical failover circuit may be an already existing logical circuit provisioned over a dedicated backup physical circuit in the data network.
Abstract:
The method and system of the present invention provides an improved technique for processing email during an unplanned outage. Email messages are redirected from the primary server to a secondary server during an unplanned outage such as, for example, a natural disaster. A notification message is sent to users alerting them that their email messages are available on the secondary server by, for example, Internet access. After the termination of the unplanned outage, email messages received during the unplanned outage are synchronized into the users standard email application.
Abstract:
A fault tolerant multiple network server system in which multiple servers concurrently act as back-up servers for each other even while they are providing their own server services to the system. Rather than having an unused server monitoring for failure of a primary server and taking over control, each is act upon the network, but when its partner should fail, it assumes control of these partner servers storage subsystem. In this way, processing power of both servers is available during normal operation, but they each provide back-up capability for the other.
Abstract:
A processor comprises a plurality of processing units, wherein there is a fixed transmission time for transmitting a message from a sending processing unit to a receiving processing unit, based on the physical positions of the sending and receiving processing units in the processor. The processing units are arranged in a column, and the fixed transmission time depends on the position of a processing circuit in the column. An exchange fabric is provided for exchanging messages between sending and receiving processing units, the columns being arranged with respect to the exchange fabric such that the fixed transmission time depends on the distances of the processing circuits with respect to the exchange fabric.