Abstract:
A transformer having input and output windings. A sample transformer includes an input winding wound around a core. The input winding has a first end and a second end. An output winding is also wound around the core. The output winding has a first end and a second end. The input winding is capacitively coupled to the output winding to provide a transfer of energy from the input winding to the output winding. A balancing winding is also wound around the core. The balancing winding has a first end and a second end. The first end of the balancing winding is electrically coupled to the first end of the input winding. The second end of the balancing winding is uncoupled such that a dot polarity of the balancing winding is to oppose an electrostatic field to be generated by the input winding relative to the output winding.
Abstract:
A transformer is constituted of an inner core, a plurality of outer cores connected in a ring to the inner core, a primary winding which is fed with a high frequency wave and wound around the inner core, and a secondary winding wound outside the primary winding. The secondary winding has, for the two outer cores, windings which are caused to pass at least once between the inner core and each of the respective outer cores, and the windings passed in the same direction are connected in parallel. With this configuration, it is possible to achieve a transformer for a switching power supply with a low voltage regulation.
Abstract:
A transformer for low-voltage applications such as landscape lighting, comprising a primary winding and a secondary winding inductively coupled to the primary winding, the primary winding adapted to be energized with a high voltage and the secondary winding adapted to carry a proportionately lower voltage, the secondary winding including a plurality of output taps, each output tap corresponding to a specified output voltage, and at least one common tap for each 300 W of output power up to the full capacity of the transformer, the secondary winding further including an additional common tap for an additional 300 W of output power beyond the full capacity of the transformer. A circuit breaker is associated with the primary winding and a circuit breaker is associated with each common tap and the additional common tap.
Abstract:
In a switching power supply circuit in which, in order to both provide high power conversion efficiency of a complex resonant converter having a synchronous rectifier circuit and reduce a circuit scale and cost by simplifying the circuit, a synchronous rectifier circuit of a winding voltage detection system is provided on a secondary side of the complex resonant converter, a coupling coefficient is decreased to about 0.8 by setting a gap length in an isolated converter transformer to about 1.5 mm, and numbers of turns of a primary winding and secondary windings are set such that a level of a voltage induced per turn (T) of the secondary windings is 2 V/T. Thus, since magnetic flux density at a core of the isolated converter transformer is decreased to a certain value or lower, a secondary side rectified current can be in a continuous mode even under a condition of heavy load.
Abstract:
An electric arc welder comprising a high switching frequency inverter for driving the primary of an output transformer where the output transformer has a plurality of modules forming the secondary windings of the transformer and each of the modules comprises a first coaxial set of concentric, telescoped tubes separated by a tubular insulator, a second coaxial set of concentric, telescoped conductive tubes separated by a tubular insulator wherein the sets each have an elongated central passage for accommodating the primary and a conductor connecting the tubes into a series circuit. These modules form a transformer for such welder.
Abstract:
A system (10) for heating a biological site in a patient's body includes a transformer (14) having a primary winding and a secondary winding. The secondary winding has a tap (24) to provide a ground reference and two sources of radio frequency (RF) energy. An active electrode (16) is connected to each source to apply energy from its associated source to the site, the energy applied by one electrode (16) being out of phase with the energy applied by the other electrode (16).
Abstract:
Embodiments of the present invention relate to independently switched inductors in a voltage converter. Each voltage transforming inductor of a voltage converter may be deignated a switch or bridge at each opposing terminal. The function of these switches is to periodically reverse the polarity of voltage across the inductors. By configuring independently switched inductors in series, the frustration of voltage tolerance limitations of the switches is mitigated.
Abstract:
An electrical reactor assembly and method of assembly is disclosed. The reactor is formed from a combination of a magnetic T-core and a pair of magnetic L-cores. A plurality of comb-like separators is placed over a vertical portion of the T-core. A wire, with a rectangular cross-section, is wound about the vertical portion of the T-core thereby forming a coil. The comb-like separators electrically isolate the wire from adjacent windings and the T-core. The L-cores are attached to the T-core such that they flank two sides of the coil. A plurality of taps is formed on a side of the coil that is not flanked by one of the L-cores. The taps are formed by extending individual windings further from the T-core than other common windings. Preferably, a hole is formed through the rectangular wire at the taps to provide a secure electrical connection to the wire.
Abstract:
Embodiments of the present invention relate to independently switched inductors in a voltage converter. Each voltage transforming inductor of a voltage converter may be designated a switch or bridge at each opposing terminal. The function of these switches is to periodically reverse the polarity of voltage across the inductors. By configuring independently switched inductors in series, the frustration of voltage tolerance limitations of the switches is mitigated.
Abstract:
The present invention relates to a current and/or voltage transformer comprising at least one primary circuit P and one secondary circuit S. The transformer according to the invention comprises m elementary windings each having Ni turns, m and Ni being integer numbers, and i lying between l and a predetermined integer number n, said groups of elementary windings being capable of being associated in series and/or in parallel in such a way as to produce a particular configuration from among a plurality of distinct configurations of primary circuits P and of secondary circuits S each of said configurations corresponding to previously fixed electrical and magnetic parameters.