Abstract:
A full color three electrode surface discharge type plasma display device that has fine image elements and is large and has a bright display. The three primary color luminescent areas are arranged in the extending direction of the display electrode pairs in a successive manner and an image element is composed by the three unit luminescent areas defined by these three luminescent areas and address electrodes intersecting these three luminescent areas. Further, phosphors are coated not only on a substrate but also on the side walls of the barriers and on address electrodes. The manufacturing processes and operation methods of the above constructions are also disclosed.
Abstract:
A color display apparatus comprises a substrate; thin film transistors formed on the substrate, each of the thin film transistors having a source electrode and a drain electrode; electroluminescence elements respectively formed over the thin film transistors and driven by the thin film transistors, each of the electroluminescence elements having a cathode connected to a source electrode or drain electrode of a thin film transistor, a luminous element layer, and an anode electrode sequentially disposed thereover. A color filter or fluorescent color conversion layer acting as a color element is formed on the side of the anode electrode of an electroluminescence element. The same luminous layer material is used for each display pixel to display a color image.
Abstract:
An alternating current thin-film lectroluminescent device includes a plurality of pixel electrodes. An electroluminescent phosphor material is located between a first dielectric layer and a second dielectric layer. A transparent electrode layer, wherein at least a portion 10 of the electroluminescent phosphor material and the first and second dielectric layers are located between the pixel electrodes and the transparent electrode layer. The first dielectric layer is closer to the transparent electrode layer than the second dielectric layer. A non-uniform substantially non-conductive light absorbing material is located between the transparent electrode layer and the first dielectric layer.
Abstract:
A color display apparatus comprises a substrate; thin film transistors formed on the substrate, each of the thin film transistors having a source electrode and a drain electrode; electroluminescence elements respectively formed over the thin film transistors and driven by the thin film transistors, each of the electroluminescence elements having a cathode connected to a source electrode or drain electrode of a thin film transistor, a luminous element layer, and an anode electrode sequentially disposed thereover. A color filter or fluorescent color conversion layer acting as a color element is formed on the side of the anode electrode of an electroluminescence element. The same luminous layer material is used for each display pixel to display a color image.
Abstract:
A multicolored linear light source is disclosed. In an embodiment, the multicolored linear light source comprises a linear light source emanating light of a first spectrum, and regions of photoluminescent material. The light of the first spectrum interacts with regions of photoluminescent material to give light of a different spectrum. The composition of different regions of photoluminescent material is different, providing light of different spectra in different regions. Coupled to each region of photoluminescent material is a columnar light guide such that light produced by the regions traverses respective columnar light guides and gets extracted.
Abstract:
A multicolored linear light source is disclosed. In an embodiment the multicolored linear light source (100) comprises a linear light source (100) emanating light of a first spectrum, and regions of photoluminescent material (102,104,106). The light of the first spectrum interacts with regions of photoluminescent material (102,104,106) to give light of a different spectrum. The composition of different regions of photoluminescent material is different, providing light of different spectra in different regions.
Abstract:
A field emitting device includes a base substrate and at least three light emitting units and configured to respectively emit at least three lights having different wavelengths from each other. Each light emitting unit includes a first electrode arranged on the base substrate, a field emitter arranged on the base substrate, an insulating layer arranged on the first electrode and including an opening to expose the field emitter, a second electrode arranged on the insulating later to control an operation of the field emitter, a third electrode facing the first electrode, and a fluorescent layer arranged on a surface of the third electrode facing the first electrode. A transmissive area is located between the florescent layers of two adjacent light emitting units.
Abstract:
Provided is a PDP in which a weak discharge is always generated in a stable manner to lower the firing voltage, the generation of the reset luminous points is restricted to improve the image quality, and reduction of the luminous efficiency and reduction of the luminance are restricted to improve the luminance. A manufacturing method of the PDP is also provided.The PDP includes a front panel and a back panel arranged to face each other with a discharge space between the panels. A phosphor layer is provided in an area of the back panel that faces toward the discharge space. Part of the surface of the phosphor layer is covered with a phosphor-coating film as a high γ member. The phosphor-coating film is made of a material having a higher secondary electron emission coefficient than a material of the phosphor layer. The high γ member and the remaining are of the surface of the phosphor layer are exposed to the discharge space.
Abstract:
An electro-optical device provided with a plurality of pixel sections, includes: a first substrate having a plurality of light-emitting elements to configure the plurality of pixel sections; a second substrate having a driving circuit to control light emission of the plurality of light-emitting elements, respectively, and disposed so as to face an element forming surface of the first substrate; and a plurality of conductive connectors provided between the first substrate and the second substrate, and electrically connect the plurality of light-emitting elements, respectively, to the driving circuit. The plurality of conductive connectors are disposed in a staggered manner at least along a first arrangement direction of the plurality of pixel sections.
Abstract:
A photo-luminescent liquid crystal display (PL LCD) includes: a light control unit which includes a liquid crystal (LC) layer modulating the UV light and electrodes driving the LC layer; and a light emitting layer which emits light by the UV light transmitted through the light control unit. The light emitting layer includes inorganic phosphors and semiconductor quantum dots (QDs) having a quantum confinement effect. The PL LCD includes adding QDs having a high quantum efficiency into luminescent substances having lower light utilization efficiency than other colors, for example, red phosphor having very low quantum efficiency to improve the light utilization efficiency, thereby improving the color balance.