Abstract:
This invention is directed toward a method for inhibiting the formation (nucleation, growth and agglomeration) of clathrate hydrates. The method comprises adding into a mixture of hydrate forming substituents and water, an effective amount of a hydrate anti-agglomerate selected from the group consisting of anionic, cationic, non-ionic and zwitterionic hydrate anti-agglomerate. The hydrate anti-agglomerant has a polar head group and a nonpolar tail group said nonpolar tail group not exceeding 11 carbon atoms in the longest carbon chain.
Abstract:
A method for inhibiting the plugging of a conduit, the conduit containing a flowing mixture comprising an amount of hydrocarbons having from one to eight carbon atoms and an amount of water wherein the amounts of hydrocarbons and water could form hydrates at conduit temperatures and pressures, the method comprising the steps of:adding to the mixture an amount of a hydrate formation inhibitor component of the formula ##STR1## wherein two of R.sub.1 -R.sub.4 are independently normal or branched alkyls having 4 or 5 carbon atoms,two of R.sub.1 -R.sub.4 are independently representing organic moieties having at least 8 carbon atoms,A represents a nitrogen or phosphorus atom, andY represents an anion;the amount of the hydrate formation inhibitor component being effective to inhibit formation of hydrates in the mixture at conduit temperatures and pressures; andflowing the mixture containing the hydrate formation inhibitor component through the conduit.
Abstract:
Process for transporting gas hydrates formed from a natural gas or from a condensate gas, consisting in using a dispersing additive, possibly coupled with a film-forming additive, in solution in a liquid hydrocarbon fraction, this liquid hydrocarbon fraction participating in the formation of an emulsion and/or of a suspension with the condensation water produced and the hydrates. The dispersing additive is recycled after the transportation of the hydrates in the pipe.
Abstract:
The high pressure of pipeline gas is reduced to the low pressure of a distribution system with simultaneous generation of refrigeration by passing the gas through two successive centrifugal compressors driven by two turbo-expanders in which the compressed gas is expanded to successively lower pressures. Refrigeration is recovered from the gas as it leaves each turbo-expander. Methanol is injected into the pipeline gas before it is expanded to prevent ice formation. Aqueous methanol condensate separated from the expanded gas is distilled for the recovery and reuse of methanol.
Abstract:
The present disclosure provides a method for frost heave prevention treatment of a smart gas pipeline and an Internet of Things system. The method includes: determining gas pressure change data of a target point based on gas transmission data of the target point and gas pipeline data of the target point; predicting temperature change data of the target point through a temperature model based on the gas pressure change data of the target point; and predicting, based on the temperature change data of the target point, the gas pipeline data of the target point, and the gas pressure change data of the target point, and in combination with environmental data of the target point, frost heave degree data of the target point.
Abstract:
The present disclosure provides a method for frost heave prevention treatment of a smart gas pipeline and an Internet of Things system. The method includes: determining gas pressure change data of a target point based on gas transmission data of the target point and gas pipeline data of the target point; predicting temperature change data of the target point through a temperature model based on the gas pressure change data of the target point; and predicting, based on the temperature change data of the target point, the gas pipeline data of the target point, and the gas pressure change data of the target point, and in combination with environmental data of the target point, frost heave degree data of the target point.
Abstract:
The present disclosure provides a method for smart gas pipeline frost heave safety management and an Internet of Things system. The method includes: obtaining gas transmission data and gas pipeline data and determining gas pressure change data of a target point based on the gas transmission data and gas pipeline data; predicting temperature change data of the target point based on the gas pressure change data, the temperature change data including gas temperature change data and soil temperature change data; predicting, based on the temperature change data, the gas pipeline data, and the gas pressure change data, and in combination with environmental data, a frost heave degree data of the target point; and determining, based on the frost heave degree data of the target point, the gas transmission adjustment data and a frost heave prevention plan.