Abstract:
An optical component mount with beam deviation monitoring and beam guiding system using such optical component mounts. The optical component mount has a location for mounting an optical element thereon for operating on the beam and at least one sensor attached to the optical mount at a predetermined position. The predetermined position is selected depending on the state of the optical component mount. The state can be, e.g., a vibrational state or a thermal expansion state. The predetermined position is chosen near or at an anti-node of at least one mode contributing to the state but not at a node of any mode expected to contribute to the state of the optical mount. The state of the optical mount is determined based on the signals obtained from the at least one sensor, which can be an accelerometer in the case of monitoring a vibrational state or a temperature sensor in the case of monitoring a thermal expansion state. The sensor is preferably embedded in the optical mount and the deviation of the beam is then determined from the state of the optical mount. Optical mounts according to the invention can be used in any beam guiding system including but not limited to those found in optical and/or opto-electronic assemblies.
Abstract:
The present invention relates to a torque sensor apparatus and method using variations in the microstructure of an optical waveguide affixed to the surface of a stress bearing member to measure the deflective force applied to the stress bearing member. A signal propagating through the optical waveguide is modified as a result of forces applied to the stress bearing member and to the optical waveguide. Induced changes in the index of refraction and alterations in the critical bending radius value of the optical waveguide result in modulation of the transmitted signal.
Abstract:
An optical element is aligned on a flexure by applying multiple laser pulses to the flexure. Additional laser pulses are applied until the optical element is aligned properly.
Abstract:
Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.
Abstract:
The invention provides a method of sampling M sensors in a fiber optic detector array, by determining a maximum sampling rate possible, and assigning priority to each sensor. Thereafter, available sampling spots are divided into discrete blocks and the sensor of highest priority is assigned sampling slot(s). The remaining sensors are placed in the remaining sampling slots in order of priority, and if a sampling slot is taken, the remaining sensors are placed in the next closest slot. The invention also provides 1D and 2D digital and spatial wavelength domain systems including a plurality of fiber Bragg gratings (FBGs). The FBGs may be illuminated by a plurality of broad band light sources, and coupled thereto by 2null2 couplers. The systems may include a 1D or 2D wavelength dispersion device, and 1D or 2D optically sensitive solid state means for spatially separating the signals at each wavelength reflected by the FBGs.
Abstract:
The invention relates to a detector unit which is made for connection to an optical bus which is formed by detector units of the same type arranged adjacently. The detector unit has a light transmitter, a light receiver and at least one optical connection path by which two optical interfaces are optically connected. At least one optical anomaly is arranged along the optical connection path which is made for the coupling of light of the light transmitter into the optical connection path and for the coupling of light out of the optical connection path to the light receiver.
Abstract:
The present invention relates to a sensor device and to a method for detecting the introduction of or changes in a chemical, biological or physical stimulus of interest in a localised environment, in particular to a sensor device and method for detecting the presence of or changes in chemical stimuli in a liquid or gas phase analyte (e.g. a microanalyte). The device compensates for fluctuations in the ambient environment.
Abstract:
The present invention relates to three dimensional conical horn antenna coupled image detectors and the manufacturing method thereof. More specifically, the present invention relates to the method of manufacturing an image detector by coupling three dimensional conical horn antenna with the image detector which are constructed using the Micro Electro Mechanical System (MEMS) Technology that improves the sensitivity of the image detector.
Abstract:
Optical touch switches are implemented based on the use of light total internal reflection and light scattering concepts. The optical touch switch basically consists of a light source, a light guide, a photodetector, and an electronic controller. The fingertip touching on the touching surface of the optical touch switch leads to the change in electrical current produced by the photodetector. As a result, the electronic control box senses this change of electrical current and allows the electrical load to stay at the desired state. Key advantages include ease of implementation, prevention of the light beam incident directly on the user's eyes, and ability to accept both strong and weak mechanical forces from users.
Abstract:
Fiber optic sensor with transmission/reflection analyzer for detection and localization of a perturbation that generates additional losses in the test fiber. The sensor includes a test fiber having a first port and a second port; a light source for producing a beam of light propagating along the test fiber; a fiber optic beamsplitter having a first port connected to the light source, a second port connected to the first port of the test fiber, and a third and a fourth port; a plurality of reflectors positioned along the test fiber and a plurality of loss-inducing members positioned along the test fiber, wherein said each of the reflectors is matched to each loss-inducing members, wherein at least one reflector is placed between each consecutive loss-inducing member; an optical reflection detector to receive a light flux, the optical reflection detector connected to the third port of optic beamsplitter, wherein the reflection detector is adapted to sense changes in the power of the light reflected from the reflectors; an optical transmission detector adapted to receive the light flux, connected to the second port of test fiber, said transmission detector being operable to sense changes in the power of the light transmitted through the test fiber; and a transmission/reflection analyzer connected to reflection and transmission detectors, said analyzer adapted to measure the value and identify the location of the disturbance along the test fiber by using a unique relation between transmitted and reflected powers for different locations of the disturbance along the test fiber.