Abstract:
We provide an electrochemical sensor in which working microelectrodes are arranged in an array and interconnected in parallel. The working electrodes are arranged so that in use, they are electrochemically coupled to a counter electrode structure through an electrolyte. The sensor also includes a microporous body arranged so that in use, it is situated at a boundary between a gaseous environment and the electrolyte. In another aspect, we provide a method of sensing in which a sample of gas is admitted to a liquid electrolyte maintained by pores of a porous substrate. A voltage is applied to the liquid electrolyte, and an electrical response to the applied voltage is observed, thereby to detect electrochemical evidence of an analyte within the liquid electrolyte.
Abstract:
An electrochemical half-cell includes an electrical terminal lead in contact with a solid electrolyte, wherein the solid electrolyte includes a doped high-entropy oxide. The electrochemical half-cell can be used as either a reference half-cell or a measuring half-cell. Methods of manufacturing the solid electrolyte and the electrochemical half-cell are further disclosed.
Abstract:
A sensor arrangement for determining at least one measurand of a measuring medium includes at least one first sensor with a first sensing element used to record measured values of a first measurand of the measuring medium, a housing having a housing wall which surrounds a housing interior containing the first sensing element, wherein the housing interior contains a medium in particular, a liquid which has a predetermined value of the first measurand.
Abstract:
A method for preparing a biosensing membrane: electrochemically activating and modifying an oxidoreductase, then performing a cross-linking treatment using a chemical cross-linking agent, and then coating on a surface of an electrode, thereby forming a biosensing membrane, wherein the chemical cross-linking agent is glutaraldehyde or polyethylene glycol diglycidyl ether. Also disclosed are a prepared biosensing membrane and monitoring device. The provided preparation method, or the biosensing membrane and monitoring device prepared by the preparation method are stable and durable, and may carry out a plurality of detections, and the foregoing biosensing membrane is particularly suitable to act as a biosensing membrane of a living body monitoring device.
Abstract:
Provided is a gas sensor and methods of monitoring the same. The gas sensor may detect gas restrictions within the gas sensor. The gas sensor may include a test gas diffusion path allowing for monitoring of restrictions within the gas sensor. A pulse of test gas may be electrochemically generated into a void disposed between the membrane and capillary of the gas sensor. The resulting transient signal on the sensing electrode may be analyzed to determine the degree of restriction present in the gas sensor.
Abstract:
A method for producing a pH half-cell by means of which, in combination with a reference electrode and an evaluation electronics unit, a pH value of a medium can be determined, comprises the following steps: applying a first structure and a second structure to a substrate, wherein the first structure is applied by means of a thin-film method and forms a resistance element having a temperature-dependent resistance value, and wherein the second structure can be employed to derive a pH-dependent potential; applying a structured passivation glass layer, wherein the passivation glass layer substantially covers the first structure and leaves the second structure substantially uncovered; applying a mixed-conducting glass, wherein the mixed-conducting glass is substantially applied to the region that was left uncovered by the passivation glass layer; and applying a pH-sensitive glass, wherein the pH-sensitive glass is applied to the mixed-conducting glass.
Abstract:
The present disclosure relates to a method for producing an exchangeable electrode assembly, with at least one sensor body and at least a first electrode, for an electrochemical sensor for determining the concentration of an analyte in a gaseous or liquid measurement medium, a corresponding electrode assembly, and an electrochemical sensor with an electrode assembly according to the present disclosure. In order to produce the electrode assembly, the following method steps are performed: providing a sensor body, and applying at least a first electrically-conductive material to a first sub-region of the sensor body for producing a first electrode of the electrode assembly.
Abstract:
Method and a device for capturing heavy metal ions included in sewage sludge. The method includes steps of: a) placing in the fluid a functionalized radiografted track-etched membrane FRTEM which contains polymer nanopores; this membrane including a first electrode on one side of the membrane, b) selectively capturing heavy metal ions inside the polymer nanopores, c) applying an anodic stripping voltammetric ASV analysis on the membrane in order to differentiate and quantify captured metal ions, the first electrode being used as an ASV detection electrode.
Abstract:
A sensor including a sensing layer is disposed over an electrode or an optode and a layer-by-layer assembled mass transport limiting membrane disposed over the sensing layer. The membrane includes at least one layer of a polyanionic or polycationic material. The assembled layers of the membrane are typically disposed in an alternating manner. The sensor also optionally includes a biocompatible membrane.
Abstract:
A fluid-type multiple electrochemical system. The system includes a substrate for an electric circuit having a plurality of electrode parts formed at regular intervals. The electrode parts each include a reference electrode and an auxiliary electrode. Also provided is a fluid-type substrate having a fluid injection part, a fluid ejection part and a plurality of fluid storages. The fluid storages are formed at the same regular intervals as the electrode parts of the substrate and are connected with each other through fluid passages. The system also includes a sensor substrate having a plurality of unit sensors formed at the same regular intervals as the electrode parts of the substrate. Each unit sensor has an electrode part, an electrode pad for supplying power voltage simultaneously, and an electrode wiring.