Abstract:
A method of fabricating a field emission display employing carbon nanotubes (CNTs) as electron emitters is provided. The method includes forming a cathode on a substrate; forming a gate insulation layer having a plurality of gate holes on the cathode; forming a gate electrode having a plurality of via-holes corresponding to the gate holes, respectively, on the gate insulation layer; forming a plurality of conductive columns higher than the gate electrode on the cathode within the respective gate holes; adhering the CNTs to the bottom of a plate template which is separately provided; bringing the bottom of the template having the CNTs to contact the tops of the conductive columns to adhere the CNTs to the tops of the conductive columns; and firing the conductive columns to lower the levels thereof. Accordingly, the problems of conventional methods, such as sinking of CNTs caused by screen printing, residual CNTs remaining within a gate when a lift-off method is used and short circuiting between gate and cathode due to the residual CNTs, can be solved. In addition, CNTs are applied to only a part for field emission, that is, only the top of a conductive column, thereby requiring fewer CNTs and decreasing fabrication cost.Moreover, the method uses stamping in order to form CNTs, so it is very advantageous in mass production.
Abstract:
The present invention provides a method for manufacturing an electron-emitting device, comprising a step for forming a polymer film between a pair of electrodes formed on a substrate, a step for giving conductivity to the polymer film by heating, and a step for providing potential difference between the pair of electrodes.
Abstract:
A cold cathode field emission device comprising; (A) a cathode electrode formed on a support, (B) an insulating layer formed on the support and the cathode electrode, (C) a gate electrode formed on the insulating layer, (D) an opening portion which penetrates through the gate electrode and the insulating layer, and (E) an electron emitting portion which is positioned at a bottom portion of the opening portion and has a tip portion having a conical form and being composed of a crystalline conductive material, the tip portion of the electron emitting portion having a crystal boundary nearly perpendicular to the cathode electrode.
Abstract:
Phosphor layers are formed on the inner surface of a face plate. An electron source device that emits electrons to excite the phosphor layers is provided on the inner surface of a base plate. The electron source device comprises an alumina substrate that has a number of small through holes. Electron-emitting material is buried in the through holes. A reference electrode is formed on the lower surface of the alumina substrate and contacts the electron-emitting material. A gate electrode is formed on the upper surface of the substrate and insulated from the electron-emitting material. The gate electrode is configured to concentrate an electron field of the electron-emitting material by virtue of an voltage applied between the reference electrode and the gate electrode, thereby to cause the electron-emitting material to emit electrons toward the phosphor layers.
Abstract:
A method for fabricating row lines and pixel openings of a field emission array that employs only two masks. A first mask is disposed over electrically conductive material and semiconductive material and includes apertures that are alignable between rows of pixels of the field emission array. Row lines of the field emission array are defined through the first mask. A passivation layer is then disposed over at least selected portions of the field emission array. A second mask, including apertures alignable over the pixel regions of the field emission array, is disposed over the passivation layer. The second mask is used in defining openings through the passivation layer and over the pixel regions of the field emission array. Conductive material exposed through the apertures of the second mask may also be removed to expose the underlying semiconductive grid and to further define the pixel openings.
Abstract:
In one aspect, an electron emission device comprises a substrate, and a first layer supported by the substrate. The first layer comprises a conductive material. The electron emission display device further comprises an electron emission tip electrically connected with the first layer, and a second layer electrically disposed between the first layer and the electron emission tip. The second layer comprises microcrystalline silicon. In another aspect, the invention encompasses a method of forming an electron emission device. A substrate is provided, and a conductive layer is formed over the substrate. A microcrystalline-silicon-containing layer is formed over the conductive layer, and a resistor layer is formed over the microcrystalline-silicon-containing layer. An emitter tip is formed over the resistor layer. In yet other aspects, the invention encompasses field emission display devices, and methods of forming field emission display devices.
Abstract:
A method of fabricating a field emission array that employs a single mask to define the emitter tips thereof and their corresponding resistors. A layer of conductive material is disposed over a substrate of the field emission array. A plurality of substantially mutually parallel conductive lines is defined from the layer of conductive material. At least one layer of semiconductive material or conductive material is disposed over the conductive lines and over the regions of the substrate exposed between adjacent conductive lines. A mask material is disposed over the layer of semiconductive material or conductive material, substantially above each of the conductive lines. Portions of the layer of semiconductive material or conductive material exposed through the mask material may be removed to expose substantially longitudinal center portions of the conductive lines. Other portions of the layer of semiconductive material or conductive material may remain over peripheral lateral edges of the conductive lines. The mask material may be removed and the layer of semiconductive material or conductive material planarized. A mask is disposed over the field emission array and portions of the layer of semiconductive material or conductive material removed therethrough to define emitter tips and their corresponding resistors. The substantially longitudinal center portion of each of the conductive lines may be removed to electrically isolate adjacent columns of pixels of the field emission array from each other. Field emission arrays fabricated by the method of the present invention are also within the scope of the present invention.
Abstract:
In a field emission film used for a field emission cathode, a filamentous structure layer is formed in the vicinity of tops of acicular projections to emit electrons. The filamentous structure layer serves to remarkably increase emission points and, as a result, to improve an emission current density. The filamentous structure layer may be composed of a carbon and is obtained by carrying out plasma processing within a hydrogen gas and/or an oxygen gas for a long time.
Abstract:
A method for making a carbon nanotube-based field emission display device includes the following steps: providing an insulative layer (22) having a first surface; depositing a layer of catalyst (26) on the first surface of the insulative layer; forming a spacer (28) having a number of openings therein such that patterned areas of the layer of catalyst are exposed in the openings; forming arrays of carbon nanotubes (30) extending from the layer of catalyst in the openings; forming a cathode electrode (34) on a top of each of the arrays of carbon nanotubes; forming gate electrodes (40) on a second, opposite surface of the insulative layer offset from the patterned areas; removing portions of the insulative layer corresponding to the arrays of carbon nanotubes so as to expose the arrays of carbon nanotubes; and attaching an anode electrode (50) having a phosphor screen (52) to the above obtained structure.
Abstract:
The present invention provides an electrode for electroluminescence for use in electronic devices including organic electroluminescent devices and a process for producing the same, in which interfacial electric characteristics, such as work functions, can be easily controlled. The process for producing an electrode for electroluminescence comprises the step of diffusing an additive element for an electrode into the electrode and/or the step of developing surfactant properties of the additive element for an electrode.