Abstract:
A technique includes distributing particle motion sensors along the length of a seismic streamer. Each particle motion sensor is eccentrically disposed at an associated angle about an axis of the seismic streamer with respect to a reference line that is common to the associated angles. The sensors are mounted to suppress torque noise in measurements that are acquired by the particle motion sensors. This mounting includes substantially varying the associated angles.
Abstract:
An apparatus includes a streamer having one or more sensor holders for retaining seismic sensors therein. A housing is disposed about a sensor with a gel-like material disposed between the housing and the sensor, thereby decoupling the sensor from its surroundings. The housing is disposed in the sensor holder and the streamer is filled with either liquid or another gel-like material.
Abstract:
According to the present invention there is provided a vibration isolation section for use in a seismic streamer system, the section including: a resilient sheath arranged to be connected end-to-end in a seismic streamer system and receive axial loads transmitted through the system, wherein the resilient sheath is configured to stretch upon receiving an axial load and substantially convert the axial load into a radial stress; and a support structure housed within the resilient sheath, the support structure including one or more members having substantially constant diameter under load which provides a reaction to the radial stress, thereby providing attenuation to the received axial load.
Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer, at least one strength member extending along the length of and disposed inside the jacket, at least one seismic sensor mounted in a sensor spacer affixed to the at least one strength member, and a void filler made from a material introduced into the jacket in liquid form and undergoing state change thereafter. The jacket includes an inner layer in contact with and having adhesiveness to the void filler, and an outer layer disposed over the outer layer and having substantially no adhesiveness.
Abstract:
A cable device wherein a signal-carrying cable is disposed within a flexible towing sleeve. The towing sleeve is made of a flexible, elongated sheet of abrasion-resistant material, into which is arranged a plurality of longitudinal, parallel pockets or sleeves. One or more elongated strain elements are arranged in the pockets such that one or more loops protrude at each end of the elongated sheet. The sheet is formed into a cylinder, in the interior of which is arranged the signal-carrying cable. A plurality of such cables may be connected in series to signal processing modules for use as seismic cables.
Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer, at least one strength member extending along the length of and disposed inside the jacket, at least one seismic sensor mounted in a sensor spacer affixed to the at least one strength member, and a void filler made from a material introduced into the jacket in liquid form and undergoing state change thereafter. The jacket includes an inner layer in contact with and having adhesiveness to the void filler, and an outer layer disposed over the outer layer and having substantially no adhesiveness.
Abstract:
Methods and apparatus for cable termination and sensor integration at a sensor station within an ocean bottom seismic (OBS) cable array are disclosed. The sensor stations include a housing for various sensor components. Additionally, the sensor stations can accommodate an excess length of any data transmission members which may not be cut at the sensor station while enabling connection of one or more cut data transmission members with the sensor components. The sensor stations further manage any strength elements of the cable array.
Abstract:
A seismic cable (110) and a method for producing a seismic cable are disclosed. The seismic cable (110) comprises a sensor module (130); at least one lead (210) to or from the sensor module (130); a stress member (225) extending continuously through the sensor module (130); and a sheath (230) enclosing the leads (210) and the stress member (225), the sheath (230) terminating at each end of the sensor module (130), and at least one mechanical guide (240) in the sensor module (130) deflecting the stress member (230). The method comprises providing a cable core including a stress member (225) and a lead (210); enclosing the cable core in a sheath (230); providing an opening in the sheath (230); and assembling a sensor module (130) to the cable core over the opening such that the stress member (225) extends continuously through the sensor module (130).
Abstract:
Described herein is a seismic streamer formed of sections including a main sheath covered with an external sheath, wherein said external sheath is formed using a thermoplastic material loaded with a biocide material.
Abstract:
An apparatus includes particle motion sensors and a streamer that contains the particle motion sensors. The streamer is to be towed in connection with a seismic survey, and the towing of the streamer produces a turbulent flow. The streamer includes an inner cable that contains the particle motion sensors and a fluid containing layer to surround the inner cable to reduce noise otherwise sensed by the particle motion sensors due to the turbulent flow.