Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer, at least one strength member extending along the length of and disposed inside the jacket, at least one seismic sensor mounted in a sensor spacer affixed to the at least one strength member, and a void filler made from a material introduced into the jacket in liquid form and undergoing state change thereafter. The jacket includes an inner layer in contact with and having adhesiveness to the void filler, and an outer layer disposed over the outer layer and having substantially no adhesiveness.
Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer, at least one strength member extending along the length of and disposed inside the jacket, at least one seismic sensor mounted in a sensor spacer affixed to the at least one strength member, and a void filler made from a material introduced into the jacket in liquid form and undergoing state change thereafter. The jacket includes an inner layer in contact with and having adhesiveness to the void filler, and an outer layer disposed over the outer layer and having substantially no adhesiveness.
Abstract:
Depth triggers for marine geophysical survey cable retriever systems. At least some of the illustrative embodiments include causing a submerged geophysical survey cable to surface. In some cases, the causing the cable to surface may include: fracturing a frangible link wherein the frangible link, before the fracturing, affixes position of a piston within a cylinder bore of a housing coupled to the geophysical survey cable, and the fracturing of the frangible link responsive to pressure exerted on a face of the piston as the geophysical survey cable reaches or exceeds a predetermined depth; moving the piston within the cylinder bore; and deploying a mechanism that makes the geophysical survey cable more positively buoyant.
Abstract:
A marine sensor cable comprises a jacket covering an exterior of the sensor cable, wherein the jacket comprises an outer portion containing biocide disposed in a co-extrusion process. A method for producing a marine sensor cable jacket comprises providing a co-extruder to construct a polyurethane jacket for a sensor cable with a first extruder constructing an inner portion of the jacket and a second extruder constructing an outer portion of the jacket; producing a mixture of thermo polyurethane and biocide; supplying thermo polyurethane to the first extruder; supplying the mixture of thermo polyurethane and biocide to the second extruder; and constructing the polyurethane jacket with the outer portion containing the biocide.
Abstract:
A system comprises marine geophysical equipment, adapted for towing through a body of water; and tightly fitting covers, attached to the marine seismic equipment, to fill-in indentations in the marine geophysical equipment, for gathering marine geophysical data. A method comprises marine geophysical equipment having tightly fitting covers, to fill-in indentations in the marine geophysical equipment, attached thereto, for gathering marine geophysical data.
Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer. At least one strength member extends along the length of the streamer and is disposed inside the jacket. At least one seismic sensor is disposed in a sensor spacer affixed to the at least one strength member. An encapsulant is disposed between the sensor and the sensor spacer. The encapsulant is a substantially solid material that is soluble upon contact with a void filling material. A void filling material is disposed in the interior of the jacket and fills substantially all void space therein. The void filling material is introduced to the interior of the jacket in liquid form and undergoing state change to substantially solid thereafter.
Abstract:
A system and method for removing asbestos and other hazardous solids from a slurry collected during removal of coatings from pipelines, equipment and other structures. The slurry is collected in a collection pan that is attached to a shroud of a hydrocleaning machine. Contaminated air and the slurry is transferred to a vacuum hopper. The contaminated air is removed from the vacuum hopper. The contaminated air is filtered to remove solid particles. Solid particles are preferably separated from the slurry by passing the slurry through various stages of filters. Pumps are used to transfer the slurry from the collection pan through the filter stages. A first flocculent is injected into the slurry to coagulate the solid particles into individual masses. A second flocculent can be injected into the slurry in order to coagulate a majority of the remaining solid particles. The coagulated masses of solid particles are removed by passing the slurry through a weir or a screen shaker. The slurry discharged from the weir or screen shaker is then passed through further filters.
Abstract:
A system and method for removing asbestos and other hazardous solids from a slurry collected during removal of insulation from pipelines, equipment and other structures. The slurry is collected in a collection pan that is attached to a shroud of a hydrocleaning machine. Solid particles are separated from the slurry by passing the slurry through various stages of filters. Pumps are used to transfer the slurry from the collection pan through the filter stages. A first flocculent is injected into the slurry to coagulate the solid particles into individual masses. A second flocculent is injected into the slurry, downstream from the injection point of the first flocculent, in order to coagulate a majority of the remaining solid particles. The coagulated masses of solid particles are removed by passing the slurry through a screen shaker. The slurry discharged from the screen shaker is then passed through further filters.
Abstract:
A seismic streamer includes at least one elongated strength member. The seismic streamer further includes a substantially rigid sensor holder coupled to the strength member and fixed in position relative to the strength member. The streamer includes at least one particle motion sensor coupled to the sensor holder and fixed in position relative to the sensor holder.
Abstract:
Retriever systems for marine geophysical survey cables. At least some of the illustrative embodiments are methods including causing a submerged sensor streamer to surface by flooding an intermediate chamber with water, the intermediate chamber defined within a cylinder of a housing coupled to the sensor streamer, the flooding of the intermediate chamber responsive to the sensor streamer reaching or exceeding a predetermined depth; and responsive to flooding the intermediate chamber moving a first piston within the cylinder; and thereby puncturing a seal of a compressed gas cylinder responsive to movement of the first piston, the puncturing makes the sensor streamer more positively buoyant.