Abstract:
Disclosed herein are methods and systems that may take advantage of unused space in general page messages (GPMs) by including multiple instances of a given page in the same GPM, in an effort to improve the chances that the intended mobile station receives the page. An exemplary paging method involves: (a) before a transmission of a general page message (GPM) that is formatted to include up to a maximum number of page records, making a determination that less than the maximum number of page records are scheduled to be included in the GPM; (b) in response to the determination, selecting, from the page records that are scheduled to be included in the GPM, at least one page record for which to include two or more instances in the GPM; and (c) transmitting the GPM, wherein two or more instances of the at least one selected page record are included in the transmission of the GPM.
Abstract:
Methods and systems for making decisions regarding handing off a user-equipment device from a serving base station to a neighboring base station. Base stations in a wireless communication network measure parameters regarding forward-links from the base stations and reverse-links to the base stations. Each base station transmits its measured parameters to its neighboring base station(s). Each base station can determine differences between the parameters it measures and the parameters measured by a neighboring base station. The differences indicate whether the quality of service provided by the serving base station is greater than the quality of service provided by a neighboring base station. The servicing base station transmits the differences to user-equipment devices served by that base station. The user-equipment device compares the differences pertaining to the serving base station and multiple neighboring base stations and selects a neighboring base station to which the user-equipment device is to be handed over.
Abstract:
Disclosed is a method and corresponding apparatus for enhanced scheduling of resources based on use of carrier aggregation. The method involves determining that (i) an individual UE is being served with carrier aggregation or with greater than a threshold amount of frequency and (ii) a processor load of the base station is greater than a threshold load. The method then involves, responsive to the determining that the individual UE is being served with carrier aggregation or with greater than a threshold amount of frequency and that the processor load of the base station is greater than the threshold load, causing the base station to allocate an extent of resources to the individual UE without using FSS.
Abstract:
Disclosed herein are methods and systems for enforcing prepayment based on lack of support of authentication functionality by a particular wireless serving system. In one embodiment, at least one home-core-network entity associated with a home core network of a mobile station receives from a particular wireless serving system a registration request associated with the mobile station. Responsive to receiving the registration request, the at least one home-core-network entity makes a determination as to whether the particular wireless serving system supports authentication functionality. Responsive to the determination being that the particular wireless serving system does not support authentication functionality, the at least one home-core-network entity sends to the particular wireless serving system a registration response that grants the request subject to at least one prepayment requirement.
Abstract:
A method and system to facilitate handoff of user equipment (UE) back to the same wireless network that was earlier serving the UE. When the UE is being served by a first wireless network and is going to be handed off to a second wireless network, the second wireless network may receive and store an identifier of the first wireless network. In turn, when the UE is going to hand off from the second wireless network (e.g., due to low signal strength or preference for another air interface protocol), the second wireless network may then transmit the identifier of the first wireless network to the UE, to cause the UE hand off back to the first wireless network rather than to some other network.
Abstract:
Disclosed herein are systems and methods for adjusting a sensitivity threshold of a wireless communication device (WCD). In an embodiment, a WCD measures both a signal power level of a received signal and a noise power level. The WCD also makes a sensitivity-adjustment determination, which includes (i) a determination that the signal power level is less than a current sensitivity threshold of the receiver of the WCD and (ii) a determination that a signal-to-noise ratio (SNR) of the signal power level to the noise power level is greater than an SNR threshold. Responsive to making the sensitivity-adjustment determination, the WCD adjusts its receiver from having the current sensitivity threshold to having an adjusted sensitivity threshold that is less than or equal to the signal power level.
Abstract:
A base station may be configured to emit a plurality of beams in a given coverage area, where each beam defines a different respective sub-coverage area of the given coverage area and serves wireless communication devices (WCDs) located in the respective sub-coverage area. While emitting these beams, the base station may detect that there is a threshold number of highly-mobile WCDs located in the given coverage area. In response, the base station may activate a global beam that serves WCDs located anywhere in the given coverage area. In turn, the base station may assign at least one highly-mobile WCD located in the given coverage area to the global beam.
Abstract:
A request to establish a call involving a wireless communication device (WCD) served by a radio access network (RAN) may be received. The WCD may receive signals from the RAN via a plurality of wireless coverage areas at respective signal strengths. The plurality of wireless coverage areas may be defined by the RAN. A media codec to use for the call and a target bitrate for the media codec to use during the call may be determined. Based on the target bitrate, a set of n wireless coverage areas through which the WCD and the RAN communicate during the call may be selected. The value of n may be between one and a predetermined maximum number. The set of n wireless coverage areas may be selected from the plurality of wireless coverage areas.
Abstract:
Methods and systems are provided for enabling adaptive per-antenna rate control based on network conditions for a wireless communication device (WCD). The WCD and a radio access network (RAN) may form a communication link that has multiple data streams, each data stream received by a different antenna of the WCD. Each data stream may have a different encoding, and thus a different data rate. Additionally, each encoding may have an associated signal-to-interference-plus-noise ratio (SINR) requirement to decode. The more complicated an encoding, the higher the data rate the encoding supports. However, more complicated encodings also need a higher SINR to decode. By first decoding a data stream with a low-complexity encoding, the data can be subtracted from a data stream having a more complicated encoding. Therefore, the SINR of the data stream having a more complicated encoding may be increased, and increase the likelihood of it being decodable.
Abstract:
Methods and systems for assigning a wireless communication device (WCD) to a wireless coverage are a based on early termination gain (ETG) are presented. In particular, a RAN may receive a request, from a WCD, for an assignment to one of a plurality of wireless coverage areas. In response to receiving the request, the RAN may select a wireless coverage area of the plurality that has a highest ETG, and assign the WCD to the selected wireless coverage area. Prior to selecting this wireless coverage area, the RAN may optionally remove one or more wireless coverage areas with high utilization from consideration.