Abstract:
Estimation of frequency error is disclosed through use of beacon or preamble transmissions. A base station transmits one or more preamble tones at predetermined frequencies using all allocated transmission power associated with the transmission bandwidth for the one or more preamble tones. The base station then transmits its synchronization signals. A UE collects a set of samples from the received transmissions waveform and successively transforms the samples to a frequency domain. The UE may then detect the preamble tones as having at least a threshold power relative to other samples in the transformed samples. The frequency error may then be set as the difference between the detected frequency or frequencies of the received preamble tones and the known predetermined transmission frequency.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may coordinate power utilization across component carriers (CCs) with different transmission time interval (TTI) configurations. For example, the UE may reserve a portion of the transmit power for a CC with a reduced TTI length (e.g., an enhanced CC (eCC)). In other examples, the UE may dynamically allocate power between CCs with overlapping uplink periods. That is, the UE may borrow power allocated to one CC to transmit on an eCC. The UE may use a prioritization scheme to determine the transmit power for each CC. In some cases, the UE may send a power headroom report based on the power level of the eCC. The power headroom may be a virtual power headroom based on predicted eCC transmission power, or an actual power headroom based on uplink scheduling.
Abstract:
Aspects of the disclosure are related to identifying whether an apparatus (e.g., base station, access point, etc.) is transmitting using a CRS based transmission scheme or a UE-RS based transmission scheme. Such detection may be necessary for PDSCH interference cancellation (IC) of a neighboring cell since a UE may not know which transmission scheme is used by the neighboring cell. For instance, the UE may know the transmission scheme of the serving cell, but the UE may not know the transmission scheme of a neighboring non-serving cell. As such, aspects of the disclosure provide for a blind detection algorithm to identify or determine a transmission mode or transmission scheme of a neighboring cell to then apply interference cancellation (IC) to an interfering signal received from the neighboring cell.
Abstract:
Uplink short transmissions (ULSTs) may be configured in a wireless communications system to be transmitted in configured uplink resources within a listen-before-talk (LBT) frame or within a ULST window during which a user equipment (UE) may transmit a ULST and during which the base station may monitor for ULSTs. A UE having an amount of data to be transmitted that is less than a threshold value may transmit the data in the ULST, and avoid the need to have the base station allocate separate uplink resources outside of the configured uplink resources or the ULST window.
Abstract:
Methods, systems, and devices for wireless communication are described. After receiving a transmission, a user equipment (UE) may store status information for the transmission and send an acknowledgment message that includes a signature. When a base station receives an acknowledgment message with a signature, it may transmit a subsequent downlink grant that includes the same signature. The signature included in a downlink grant may enable the UE to retrieve a stored status and decode the next data transmission based on the retrieved status. That is, the base station may use the signature in the grant to indicate which acknowledgment the grant is based on.
Abstract:
Methods, systems, and devices are described for a system that supports wireless communication with a first set of devices using a first OFDM symbol duration associated with a first tone spacing (i.e., a first physical layer (PHY) configuration) and second set of devices using a PHY configuration associated with a second tone spacing. A base station may transmit a set of discovery reference signals (DRS) in a narrowband region of a primary channel of a carrier. The DRS may have the first PHY configuration and a secondary channel of the carrier may support communications using the second PHY configuration. The base station may transmit a first system information (SI) message for one set of devices using the first PHY configuration, and it may transmit a second SI message for another set of devices using the second PHY configuration.
Abstract:
Methods, systems, and devices for wireless communication are described. A transmitting device, which may be configured without a radio link control (RLC) layer, may receive a packet data convergence protocol (PDCP) protocol data unit (PDU) at a media access control (MAC) layer. The device may then generate a set of transport blocks at the MAC layer using the PDCP PDU and transmit them over a wireless connection. A receiving device, which may also be configured without an RLC layer, may receive the transport blocks at the MAC layer, generate a MAC service data unit (SDU), and convey the MAC SDU to a PDCP. In some cases, the receiving device may then send an acknowledgement (ACK) or negative acknowledgement (NACK) for each transport block that includes a portion of the PDCP PDU, and the transmitting device may indicate to the PDCP layer whether the PDCP PDU was successfully received.
Abstract:
Techniques for code block (CB) segmentation and rate matching in wireless deployments that may use CB-level feedback may provide that a transport block group (TBG) may include one or more CBs from multiple transport blocks (TBs). Such TBGs may support retransmissions of one or more CBs from different TBs within a TBG transmission. In certain examples, a TBG size may be determined, and a retransmission size associated with any CBs to be retransmitted are determined. Based at least in part on the TBG size and retransmission size, it may be determined whether a new TB may be included in the TBG.
Abstract:
Techniques are described for wireless communication. One method includes identifying a plurality of counters used to contend for access to a plurality of channels of an unlicensed radio frequency spectrum band. Each of the plurality of counters is associated with a respective channel of the plurality of channels of the unlicensed radio frequency spectrum band. The method also includes measuring at least one channel of the plurality of channels of the unlicensed radio frequency spectrum band. The measuring is associated with a contention for access to the at least one channel of the unlicensed radio frequency spectrum band. The method also includes synchronizing or desynchronizing at least a subset of the plurality of counters based at least in part on the measuring.
Abstract:
Methods, systems, and devices for wireless communication are described, which may be employed for wireless communication in contention-based (e.g., unlicensed or shared) spectrum. An aperiodic channel state information (CSI) reference signals (RS) may be used for channel quality indicator (CQI) measurements, for example. A user equipment (UE) may receive signaling to indicate the presence of CSI RS and may receive the CSI RS according to the signaling. The UE may then compute a CQI based on CSI RS, and transmit the CQI in a report to a base station. In some examples, a quasi-periodic CSI RS is used. For instance, the UE may determine a different location for the CSI RS. For example, the UE may identify a periodic anchor subframe, and locate the CSI RS based on constant offset from the anchor subframe. Periodic or a clear-channel-assessment-exempt transmission based CSI RS examples are also described.