Abstract:
A method for preparing a lithographic printing plate includes treating a lithographic printing plate precursor including a hydrophilic support and an image-forming layer containing the following (i) to (iii) with an aqueous solution having a buffering ability: (i) a binder polymer comprising a repeating unit having a structure represented by the following formula (1); (ii) an ethylenically unsaturated compound; and (iii) a polymerization initiator, P-L-(CO2H)n (1) wherein P represents a part constituting a main chain skeleton of the polymer, L represents an (n+1) valent connecting group, and n represents an integer of 1 or more.
Abstract:
On press developable negative-working, on-press developable imageable elements have improved printout qualities with an incorporated infrared radiation absorbing compound that has a cyanine dye chromophore that is represented by the following Structure (CHROMOPHORE): wherein one or both of Q1 and Q2 are independently substituted or unsubstituted acyl groups —(C═O)—R3′ and —(C═O)—R4′ respectively, wherein R3′ and R4′ are independently substituted or unsubstituted alkyl or aryl groups, or they are joined together to form a ring structure, or one of Q1 and Q2 is hydrogen and the other is a substituted or unsubstituted acyl group, A and A′ are independently —S—, —O—, —NH—, —CH2—, or —CR′R″— groups wherein R′ and R″ are independently substituted or unsubstituted alkyl groups, or R′ and R″ together can form a substituted or unsubstituted cyclic group, Z represents the carbon atoms needed to form a 5- to 7-membered carbocyclic ring, Z1 and Z2 are independently substituted or unsubstituted benzo or naphtho condensed rings, and R1′ and R2′ are independently substituted or unsubstituted alkyl, cycloalkyl, or aryl groups.
Abstract:
A laser sensitive lithographic printing plate comprises an electrochemically grained, anodized, hydrophilically treated aluminum substrate with a reflection optical density of 0.30 or higher; a free radical polymerizable photosensitive layer; and a water soluble or dispersible overcoat. The photosensitive layer comprises a polymeric binder, a free radical polymerizable monomer, a free radical initiator, and a sensitizing dye. Such dark aluminum substrate in combination with the hydrophilic treatment allows both clean background and good printing durability. Such plate can be exposed with a suitable laser at lower dosage to cause hardening in the exposed areas. The exposed plate can be developed with a regular liquid developer or with ink and/or fountain solution.
Abstract:
Negative lithographic printing plate having on a substrate a photosensitive layer comprising an alkaline soluble polymeric binder, an alkaline insoluble polymeric binder, a polymerizable monomer, and an initiator is described. The photosensitive layer is imagewise exposed with a radiation to cause hardening in the exposed areas, and then developed to remove the non-hardened areas. The combination of both alkaline soluble polymeric binder and alkaline insoluble polymeric binder in a photosensitive layer can give excellent combined durability, developability, and coatability.
Abstract:
A negative-working lithographic printing plate precursor is disclosed that can be developed on the press without going through a development processing step, and a method of lithographic printing is also disclosed that uses this negative-working lithographic printing plate precursor. Also disclosed are a negative-working lithographic printing plate precursor that can be developed by a water-soluble resin-containing aqueous solution and a method of lithographic printing that uses this negative-working lithographic printing plate precursor. A negative-working lithographic printing plate precursor is provided that exhibits an excellent fine line reproducibility in nonimage areas even when printing is performed using ultraviolet-curing ink (UV ink). Also provided is a negative-working lithographic printing plate precursor that exhibits an excellent combination of fine line reproducibility and printing durability and that resists the production of scum during on-press development. The negative-working lithographic printing plate precursor has a support and has thereon a photopolymerizable layer that contains a polymer compound that has the urea bond in the main chain and a hydrophilic group and a carboxylic acid content less than 0.05 meq/g. The method of lithographic printing uses this negative-working lithographic printing plate precursor.
Abstract:
A negative-working lithographic printing plate precursor can be imaged with infrared radiation and processed in a single step using a single processing solution having a pH of from about 3 to 11. The precursor has a primary polymeric binder that comprises recurring units derived from one or more N-alkoxymethyl(meth)acrylamides, provided that such recurring units are present in the primary polymeric binder in an amount of at least 10% based on the total dry primary polymeric binder weight. In addition, the primary polymeric binder is present in an amount of from about 12 to about 70% based on total imageable layer dry weight. The imaged precursor can be processed off-press or on-press.
Abstract:
A lithographic printing plate precursor comprising a support and an image recording layer capable of drawing an image by exposure with an infrared laser, wherein the image recording layer contains (A) an infrared absorbent and (B) an iodonium salt represented by the following formula (1): wherein Ar1 and Ar2 each represents a benzene ring which may have a substituent, provided that two benzene rings are differing in the substituent from each other and a total of Hammett's σ values of substituents on at least one of the benzene rings is a negative value, and Z represents a counter anion.
Abstract:
A polymerizable composition comprising: a polyurethane resin synthesized by using a compound represented by the following formula (I) as one of starting materials; a photopolymerization or thermal polymerization initiator; and an addition-polymerizable compound having an ethylenically unsaturated bond: wherein X represents a tri- or higher valent atom; R1 and R2 each independently represent a single bond or an alkylene group optionally having a substituent, provided that R1 and R2 do not represent a single bond at a same time; A represents a straight chain linking group; and n is an integer of from 1 to 5.
Abstract:
A substrate useful for forming lithographic printing plate precursors includes a metal or polymer support and an interlayer comprising a trialkoxysilyl polyethylene glycol acrylate having the following Structure (I): wherein R1 and R2 are independently hydrogen or C1 to C6 alkyl, C1 to C6 alkenyl, C1 to C6 alkoxy, C1 to C6 acyl, C1 to C6 acyloxy, phenyl, halo, or cyano groups, or R1 and R2 together can form a cyclic group, R3 is hydrogen, or a C1 to C6 alkyl, phenyl, halo, or cyano group, R4 and R5 are independently hydrogen or methyl groups, R6 is hydrogen or a C1 to C12 alkyl group, X1 is —O— or —NR— wherein R is hydrogen or an alkyl or aryl group, X2 is —NR′— wherein R′ is hydrogen or an alkyl or aryl group, m is an integer of from 15 to 200, and n is an integer of from 1 to 12. The lithographic printing plates can be negative-working and particularly useful for on-press development and have a sulfuric acid-anodized aluminum support.
Abstract:
A method of on-press developing a high-speed laser sensitive lithographic printing plate with ink and/or fountain solution is described. The printing member comprises on a substrate a photosensitive layer soluble or dispersible in ink and/or fountain solution and capable of hardening upon exposure to a laser. The plate is exposed with a laser and on-press developed with ink and/or fountain solution. At least a portion of the on-press development is performed with the plate under a yellow-red light or in substantial darkness.