摘要:
A head-gimbal assembly. The head-gimbal assembly includes a suspension, a head-slider coupled to the suspension, a magnetic-recording assistance element on the head-slider for applying an electromagnetic wave to a magnetic-recording disk, and a transmission line on the suspension for transmitting signals to the magnetic-recording assistance element. The transmission line includes an electrically conductive line for transmitting the signals, an upper shield placed above the electrically conductive line along the electrically conductive line, a lower shield placed below the electrically conductive line along the electrically conductive line, and a plurality of columns arranged at each of a right side and a left side of the electrically conductive line along the electrically conductive line for connecting the upper shield and the lower shield. The plurality of columns arranged at the right and left sides includes, respectively, a right linear array of columns and a left linear array of columns.
摘要:
An over-center latch assembly has a base for attaching the over-center latch assembly to a first part of a unit. The first part of the unit is moveable to a second part of the unit. A handle is rotatably coupled to the base by a hinge. A pivot is coupled to the handle such that the pivot traverses about the hinge. The pivot is configured to receive a hasp. A stop surface is coupled to the base whereby rotation of the handle about the hinge is limited by the stop surface. A hinge bearing is coupled to the hinge. The hinge bearing enables an increased quantity of latch/unlatch cycles of the over-center latch assembly before failure of the over-center latch assembly.
摘要:
Embodiments of the present invention help to securely manage a data cryptographic key in a data storage device. In an embodiment of the present invention, a cryptographic processor for encrypting and decrypting data is located between a host interface and a memory manager. In parts of the hard disk drive (HDD), except for the host interface, the HDD handles user data in an encrypted state. A data cryptographic key which the cryptographic processor uses to encrypt and decrypt the user data is encrypted and stored in a magnetic disk. A multiprocessing unit (MPU) decrypts the data cryptographic key using a password and a random number to supply it to the cryptographic processor. Using the password and the random number, the HDD can manage the data cryptographic key with more security.
摘要:
Embodiments of the present invention provide an accumulation element with high resolving power and high output suitable for magnetic recording and reproducing at high recording density. According to one embodiment, a plurality of spin injection parts and are provided to increase the total amount of spin electrons. The spin accumulation element is composed of a non-magnetic conductor, a first magnetic conductor, a second magnetic conductor, and a third magnetic conductor, each of which are in contact with the non-magnetic conductor through the tunneling junction. An output voltage due to the spin accumulation effect is detected as a potential difference between the non-magnetic conductor and the third magnetic conductor. The first magnetic conductor of the first spin injection part is fixed by a first antiferromagnetic conductor and the second magnetic conductor of the second spin injection part is fixed by a second antiferromagnetic conductor so that their directions of magnetization are anti-parallel to each other.
摘要:
A “scissoring-type” current-perpendicular-to-the-plane giant magnetoresistive (CPP-GMR) sensor has magnetically damped free layers. In one embodiment each of the two free layers is in contact with a damping layer that comprises Pt or Pd, or a lanthanoid (an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Th, Yb, and Lu). Each of the two free layers has one of its surfaces in contact with the sensor's electrically conducting nonmagnetic spacer layer and its other surface in contact with its associated damping layer. A nonmagnetic film may be located between each free layer and its associated damping layer. In another embodiment the damping element is present as a dopant or impurity in each of the two free layers. In another embodiment a nanolayer of the damping element is located within each of the two free layers.
摘要:
A method for self aligning a lapping guide with a structure of a write pole. A write pole is formed over a substrate and an electrically conductive material lapping guide material is deposited in a location that is removed from the write pole. A mask is then formed over a portion of the write pole and a portion of the electrically conductive material. A material removal process such as reactive ion etching can then be performed to remove a portion of the magnetic material that is not protected by the mask structure. An magnetic material is then electroplated over the write pole with the write pole, with the mask still in place. In this way, the electroplated material has an edge that is self aligned with an edge of the electrically conductive lapping guide material, both being defined by the same mask structure.
摘要:
A method for manufacturing a magnetic sensor that has a flat upper shield. A sensor stack is formed with a sensor capping layer at its top and a first CMP stop layer over the sensor capping layer and a mask formed over the CMP stop layer. A hard bias layer and second CMP stop layer are deposited over the sensor stack, capping layer, first CMP stop layer and mask. A chemical mechanical polishing process is then performed to remove the mask, leaving a portion of the hard bias layer exposed between the first and second CMP stop layers. An ion milling is then performed to etch back the exposed portions of the hard magnetic bias layer. A reactive ion etching is then performed to remove the remaining first and second CMP top layers. An upper shield can then be formed on a substantially flat surface.
摘要:
A system for plating according to one embodiment includes a plating cell containing plating solution; an anode in contact with the plating solution; a cathode in contact with the plating solution; and a hydrogen electrode in contact with the plating solution.
摘要:
The present invention provides a method for manufacturing a TMR sensor that reduces damage to a sensor stack during intermediate stages of the manufacturing process. In an embodiment of the invention, after formation of a sensor stack, a protective layer is deposited on the sensor stack that provides protection from materials that may be used in subsequent steps of the manufacturing process. The protective layer is subsequently converted to an insulating layer and the thickness of the insulating layer is extended to an appropriate thickness. In converting the protective layer to an insulating layer, the sensor stack is not directly exposed to materials that may damage it. For example, in an embodiment of the invention, Mg is used as the protective layer that is subsequently converted to MgO with the introduction of oxygen. Although direct contact of oxygen with the sensor stack may cause damage to the sensor stack, direct contact is avoided by the present invention. Subsequently, the thickness of the insulating layer, in this example can be extended to an appropriate thickness without exposing the sensor stack to damage causing oxygen and inter-diffusion.
摘要:
A disk drive apparatus includes at least one disk, a head-arm assembly, and a controller circuit. The head arm assembly includes at least one read/write head. The head-arm assembly is movable to enable the read/write head to access a writable surface of the disk. The controller circuit also causes the read/write head to record data on the writable surface of the disk in a write append format.