Abstract:
An liquid crystal display with data compensating function includes a plurality of gate lines, a plurality of first data lines, a plurality of second data lines, a pixel array, a first common end, a second common end, a plurality of first coupling lines, and a plurality of second coupling lines. The first coupling lines are disposed correspondingly near the first data lines, and are coupled to the first common end. The second coupling lines are disposed correspondingly near the second data lines, and are coupled to the second common end. The first common end carries voltages having same polarity as those of the first data lines for driving the first coupling lines. The second common end carries voltages having same polarity as those of the second data lines for driving the second coupling lines. The first common end is isolated from the second common end.
Abstract:
An electrophoretic display and a driving method thereof are provided. The electrophoretic display includes a display panel, a storage unit and a timing controller. The display panel has a plurality of sub pixels. The storage unit stores a plurality of sets of multiple-grayscale driving waveforms, in which the driving voltage scales of driving waveforms corresponding to a same grayscale in the sets of multiple-grayscale driving waveforms are different from each other. The timing controller is coupled to the storage unit and the display panel and receives an image signal, and when the image signal transmits a multiple-grayscale frame, the timing controller sequentially adopts the sets of multiple-grayscale driving waveforms to drive the sub pixels.
Abstract:
A driving method of an electrophoretic display having at least a display particle is provided. The driving method includes the following steps. A first voltage difference is applied to a data line in a first period, in which the data line corresponds to one of the display particles. At least a particle restore period is inserted in the first period, and a second voltage difference is applied to the data line in the particle restore periods, in which the second voltage difference is different from the first voltage difference. With this method disclosed here, the maxima brightness, maxima darkness, contrast ratio, color saturation, bistability, and image updating time can be largely improved.
Abstract:
A display circuit adapted for a display device and the display device are provided. The display device comprises a gate drive device, a data drive device and the display circuit. The display circuit comprises at least one display unit which has four pixels. Each of the pixels has two sub-pixels, each of which has a transistor coupled to a pixel electrode. The transistors of the two sub-pixels of each of pixels are cascaded to electrically connect to the data drive device. The transistors of the two sub-pixels of each of pixels are electrically connected to the gate drive device, respectively, to receive signals, provided from the gate drive device, as switching signals for determining whether a data voltage provided by the data drive device is received or not.
Abstract:
A liquid crystal display and method for driving the same are proposed. The liquid crystal display includes a pixel matrix. The pixel matrix includes two first pixel groups each having a first pixel and a second pixel are at one side of the data line, and two second pixel groups each having a third pixel and a fourth pixel are at the other side of the data line. The driving method includes steps of: driving one of the two second pixel groups to transmit a first signal to a fourth pixel of the driven second pixel group, driving one of the two first pixel groups to transmit a second signal to a first pixel of the driven first pixel group, driving the other second pixel group to transmit a third signal to a fourth pixel of the other second pixel group, and driving the second pixel group to transmit a fourth signal to a third pixel of the driven second pixel group.
Abstract:
A display device having slim border-area architecture is disclosed. The display device includes a substrate, a plurality of data lines, a plurality of gate lines, a plurality of auxiliary gate lines and a driving module. The substrate includes a display area and a border area. The data lines, the gate lines and the auxiliary gate lines are disposed in the display area. The driving module is disposed in the border area. The gate lines are crossed with the data lines perpendicularly. The auxiliary gate lines are parallel with the data lines. Each auxiliary gate line is electrically connected to one corresponding gate line. The data and auxiliary gate lines are electrically connected to the driving module based on an interlace arrangement. Further disclosed is a driving method for delivering gate signals provided by the driving module to the gate lines via the auxiliary gate lines.
Abstract:
A display panel with half source driver structure and a display data supplying method thereof are disclosed. The display panel includes a plurality of gate driving circuits, a data line, a plurality of first gate lines and second gate lines, a plurality of first pixels and second pixels. The first pixels are arranged along the data line and form two columns. The first pixels are disposed at one side of the data line and electrically coupled to the respective first gate lines. The second pixels are arranged along the data line and form two columns. The second pixels are disposed at an opposite side of the data lines and electrically coupled to the respective second gate lines. The data line has a bending portion between each two sequentially connected first pixels. The gate driving circuits are electrically coupled to the first gate lines and the second gate lines.
Abstract:
A display device includes a data line, a first and second pixel rows and a first and second gate control lines all formed on a substrate. The first pixel row includes a plurality of pixels each containing two neighboring first sub-pixel and second sub-pixel, the first sub-pixel is coupled to the data line, the second sub-pixel is coupled to the data line through the first sub-pixel. The second pixel row is neighboring with the first pixel row and includes a plurality of pixels each containing two neighboring third sub-pixel and fourth sub-pixel, the third sub-pixel is coupled to the data line, the fourth sub-pixel is coupled to the data line through the third sub-pixel. The first and second gate control lines respectively are for enabling the first and second sub-pixels and both are not used to enable the third and fourth sub-pixels. A driving method of gate control lines also is provided.
Abstract:
A display apparatus and a method for displaying an image are provided. The display apparatus includes a pixel array, a polarity (POL) signal generator, and a drive circuit. The pixel array which includes a plurality of pixels is configured to display a plurality of frames of the image. The POL signal generator is configured to generate a plurality of POL signals. The drive circuit is configured to adjust the frames of the image according to the POL signals, and output the frames to the pixel array.
Abstract:
An liquid crystal display with data compensating function includes a plurality of gate lines, a plurality of first data lines, a plurality of second data lines, a pixel array, a first common end, a second common end, a plurality of first coupling lines, and a plurality of second coupling lines. The first coupling lines are disposed correspondingly near the first data lines, and are coupled to the first common end. The second coupling lines are disposed correspondingly near the second data lines, and are coupled to the second common end. The first common end carries voltages having same polarity as those of the first data lines for driving the first coupling lines. The second common end carries voltages having same polarity as those of the second data lines for driving the second coupling lines. The first common end is isolated from the second common end.