Abstract:
An electret loudspeaker device including a diaphragm, a first perforated electrode and a first spacer is provided. The diaphragm has an electret layer and an electrode layer. The first perforated electrode is stacked on a side of the diaphragm near the electret layer, and has multiple holes. The first spacer is stacked between the diaphragm and the first perforated electrode, and includes a first distribution area and plural second distribution areas. The first distribution area has first openings penetrating through the first spacer, and each first opening has a first opening space volume between the diaphragm and the first perforated electrode. Each second distribution area has second openings penetrating through the first spacer, and each second opening has a second opening space volume between the diaphragm and the first perforated electrode. A difference between the first and the second opening space volumes is greater than 10%.
Abstract:
A sound-generating device comprises a first enclosure having at least one first electrode and a first piezoelectric layer, a first terminal of an audio signal output being coupled to the at least one first electrode of the first enclosure, a second enclosure having at least one first electrode and a first piezoelectric layer, and a first bendable element coupled between the first and second enclosures. The at least one first electrode is coupled with the first terminal of the audio signal output. The first piezoelectric layer of the first enclosure and the first piezoelectric layer of the second enclosure are configured to respond to the signal supplied by the audio signal output and to generate sound waves.
Abstract:
An ultrasonic distance-measuring sensor assembly and an ultrasonic distance-measuring sensor thereof are disclosed. The ultrasonic distance-measuring sensor includes at least two piezoelectric actuators and a member. The member includes a side wall, at least two vibration generating/receiving surfaces and a partition. The vibration generating/receiving surfaces accommodate the piezoelectric actuators as sources. The side wall surrounds the vibration generating/receiving surfaces. The partition is disposed between the vibration generating/receiving surfaces and includes a slot. The slot is disposed between the vibration sending/receiving surfaces.
Abstract:
A speaker comprises at least one electrode electrically coupled with an audio signal input and a film comprising at least one electret layer. The film is configured to interact with the electrode in response to an audio signal supplied by the audio signal input and to vibrate to generate sound waves. The electret layer is formed from a polymer-containing solution.
Abstract:
A flexible actuator comprises a thin film and at least one first enclosure with at least one first bendable element coupled to the first enclosure. The thin film may comprise a conductive layer and a first electret layer over a first surface of the conductive layer. The thin film is configured to be bendable. The first enclosure have a first electrode layer as part of the first enclosure. The first enclosure is provided over the first electret layer with the first electrode layer being spaced apart from the first electret layer. The first electrode layer is coupled with a first terminal of an audio signal input. The thin film is configured to interact with the first enclosure in response to audio signals supplied by the audio signal input and to generate sound waves.
Abstract:
An ultrasound transducer has a cup-shaped casing. The cup-shaped casing has a sidewall. A cross section of an inner surface of the sidewall being perpendicular to a central axis of the ultrasound transducer substantially shows a dumbbell-shaped contour. The dumbbell-shaped contour has a pair of opposite straight-line sections being substantially parallel to a longitudinal axis of the dumbbell-shaped contour and a pair of opposite arc sections being located respectively at two ends of the longitudinal axis of the dumbbell-shaped contour and respectively forming two enlarged portions of the dumbbell-shaped contour. Two ends of each arc section of the dumbbell-shaped contour respectively joint the straight-line sections through two curve sections and each curve section is connected to one end of the arc section and one straight-line section. At least one enlarged area of a dumbbell-shaped surface of an inside bottom surface has a recessed portion.
Abstract:
A computer system capable of providing assistance in the preparation of a patent application is provided. The computer system includes a database group. The database group includes a case database for storing a case file. The case database includes a drawing data storage for storing at least one drawing of an embodiment of an invention that is the subject of a patent application and that corresponds to the case file. The at least one drawing includes at least one component reference numeral. The case database further includes a component description data storage for storing component-descriptive text of at least one component of the embodiment that corresponds to the case file, the at least one component corresponding to the at least one component reference numeral included in the at least one drawing stored in the drawing data storage.
Abstract:
A MEMS wireless monitoring bio-diagnosis system includes an implantable biosensor system chip, a surface transmitter and an external monitor center. The implantable biosensor system chip contains a biosensor for a cardio-vascular indicator and a wireless transmitter to deliver detected bio-signal data. With the MEMS wireless monitoring bio-diagnosis system, the bio-signal data can be monitored effectively and transmitted to a remote medical unit.
Abstract:
An ultrasonic distance-measuring sensor assembly and an ultrasonic distance-measuring sensor thereof are disclosed. The ultrasonic distance-measuring sensor includes at least two piezoelectric actuators and a member. The member includes a side wall, at least two vibration generating/receiving surfaces and a partition. The vibration generating/receiving surfaces accommodate the piezoelectric actuators as sources. The side wall surrounds the vibration generating/receiving surfaces. The partition is disposed between the vibration generating/receiving surfaces and includes a gap. The gap is disposed between the vibration sending/receiving surfaces.
Abstract:
A speaker system that includes an audio signal-receiving interface, a modulating circuit, a phase-control circuit, and a number of speaker units. The audio signal-receiving interface is configured to receive an audio signal, and the modulating circuit is coupled with the audio signal-receiving interface. The modulating circuit is configured to modulate a low frequency component of the audio signal and to generate a modulated signal. The phase-control circuit is coupled with the modulating circuit and the audio signal-receiving interface. The phase-control circuit is configured to receive the modulated signal and a high-frequency component of the audio signal and to control a phase of the modulated signal, a phase of the high-frequency component of the audio signal, or both. The speaker units are coupled with the phase-control circuit and configured to generate sound waves based on signals supplied by the phase-control circuit.