Abstract:
In a substrate vertical transistor cells are formed and are arranged, in a transistor cell array, row by row in an x direction and column by column in a y direction. Lower source/drain regions of the transistor cells are connected to a common connection plate. Upper source/drain regions of the transistor cells impart a contact connection for instance to a storage capacitor of a DRAM memory cell. Active trenches running between the transistor cells with word lines are formed along the x direction. The word lines form gate electrodes in sections. A potential at the gate electrode controls a conductive channel in an active region arranged in each case between the upper and the lower source/drain connection region. According to the invention, the active regions of adjacent transistor cells are sections of a contiguous layer body and are connected to one another. An accumulation of charge carriers in the active region and floating body effects are avoided without increasing the area requirement of a transistor cell.
Abstract:
Memory cells each having a cell capacitor and a cell transistor, which are arranged in a vertical cell structure, are provided in the cell array of a DRAM. By means of a deep implantation or a shallow implantation and subsequent epitaxial growth of silicon, a buried source/drain layer is formed, from which lower source/drain regions of the cell transistors emerge. The upper edge of the buried source/drain layer can be aligned with respect to a lower edge of a gate electrode of the cell transistor and this results in a reduction of a gate/drain capacitance and also a leakage current between the gate electrode and the lower source/drain region. A body connection plate for the connection of the channel regions is applied to the substrate surface and contact holes are introduced into the body connection plate. Upper source/drain regions of the cell transistors are formed by implantation through the contact holes.
Abstract:
A bit line configuration for contact-connecting at least one memory cell, in particular a DRAM memory cell, has bit lines disposed above the plane of the memory cell. A first bit line in a first bit line level is disposed below a second bit line in a second bit line level and the second bit line penetrates through the first bit line at at least one location of the first bit line for the purpose of producing a contact with the at least one memory cell at penetration locations. It is thus possible to provide space-saving structures, in particular sub-8F2 structures.
Abstract:
In a substrate vertical transistor cells are formed and are arranged, in a transistor cell array, row by row in an x direction and column by column in a y direction. Lower source/drain regions of the transistor cells are connected to a common connection plate. Upper source/drain regions of the transistor cells impart a contact connection for instance to a storage capacitor of a DRAM memory cell. Active trenches running between the transistor cells with word lines are formed along the x direction. The word lines form gate electrodes in sections. A potential at the gate electrode controls a conductive channel in an active region arranged in each case between the upper and the lower source/drain connection region. According to the invention, the active regions of adjacent transistor cells are sections of a contiguous layer body and are connected to one another. An accumulation of charge carriers in the active region and floating body effects are avoided without increasing the area requirement of a transistor cell.