Abstract:
A permanent magnet in which the magnetization direction varies with location to optimize or restrict a magnetic field property in a selected direction at a selected point. The magnetic field property may be, for example, the transverse magnetic field, axial magnetic field, axial gradient of the transverse magnetic field, transverse gradient of the transverse magnetic field, axis gradient of the axial magnetic field, transverse gradient of the axial magnetic field, the product of the transverse magnetic field and the transverse gradient of the transverse magnetic field, the product of the transverse magnetic field and the axial gradient of the transverse magnetic field, the product of the axial magnetic field and the transverse gradient of the axial magnetic field, or the product of the axial magnetic field and the axial gradient of the axial magnetic field. The magnet may be formed of one or more segments in which the magnetization direction varies smoothly and continuously, or the magnet may be formed of a plurality of segments in which the magnetization direction is constant. A method of making and using such magnets is also disclosed.
Abstract:
A system for magnetically navigating a medical device in an operating region within the body of a patient. The system includes a magnet having a front field projecting from the front of the magnet sufficient to project a magnetic field into the operating region in the patient. The magnet is mounted for movement between a navigation position in which the magnet is located adjacent to the patient with the front of the magnetic generally facing the operating region, and an imaging position in which the magnet is spaced from the patient and the front generally faces away from the operating region.
Abstract:
A system for magnetically assisted surgery includes a magnetic support structure, a patient support structure and a magnet having at least four poles attached to the magnetic support structure so that the magnet provides a near-field magnetic field in an operating region of a patient supported by the patient support structure. The magnet is moveable so that the direction of the magnetic field lines in the operating region is adjustable. The magnet may include a pair of essentially semicircular half-segments permanently magnetized and joined in an extremely stable disk configuration. The magnetic field and gradient field provided by the magnet is such that movement of the disk in one plane combined with rotation of the disk is sufficient to orient the magnetic field during surgical use, thereby reducing interference to medical imaging devices needed during surgery. An example of a medical delivery device that may be used for surgery in conjunction with this system is a flexible endoscope or catheter having a series of magnetically permeable rings.
Abstract:
An articulated magnet assembly optionally includes one or two additional fixed magnets to guide or move such as by pulling or pushing a magnetic structure in the body. The magnetic structure may be a magnetic tip of a catheter or a magnetic seed, or other such magnetic assembly, implant or device. The device is arranged to facilitate biplanar, real-time, X-ray imaging of the patient. The moved magnet can be a large, strong permanent magnet or a cored solenoid. The added, fixed electromagnets may have either normally conducting or superconducting coils. The magnet on the articulated magnet assembly can move radially, along a polar direction, and at an azimuthal angle, and may also pivot in place to direct an opposite pole of the magnet in the direction of the patient. Magnetically-assisted surgery can be performed, in some instances, by pivoting the magnet on one or two axes without withdrawing it from the vicinity of the patient to control the direction and/or orientation of a temporarily or permanently implanted magnetic surgical device. If the magnet is an electromagnetic coil, this pivoting may or may not have to be accompanied by a ramping of current in the coil.