Abstract:
An improved process for preparing 3-dimethylamino-2,2-dimethylpropanal from isobutyraldehyde, dimethylamine and a source of formaldehyde is disclosed wherein the process is carried out at a pH value of 9 to 11.
Abstract:
A process for the preparation of 2,3-dimethylpentanal which comprises contacting 3-methyl-2-pentene with carbon monoxide and hydrogen in the presence of a rhodium carbonyl compound as catalyst. Rhodium carbonyl catalysts are those which contain only rhodium and carbon monoxide and in certain cases, also hydrogen. Especially contemplated are non-phosphine containing rhodium carbonyl catalysts.
Abstract:
An incinerator has a lower combustion portion preferably equipped with a burner and an upper afterburning portion which can be swung off the lower portion. This upper portion has an upper outlet mouth. A chimney extends alongside the portions and has a lateral flue which opens just above the upper outlet mouth. A collar on the flue controls the amount of air let in at the gap between the flue''s end and the mouth and this collar can be lifted also to swing out the upper afterburning portion for loading the combustibles into the burning chamber. A flap on the chimney below where the flue is connected is biased closed by a weight and, on excessive draft, opens to control this draft.
Abstract:
3(4),7(8)-bis(aminomethyl)bicyclo[4.3.0]nonane and a process for its preparation, wherein bicyclo[4.3.0]nona-3,7-diene is reacted with synthesis gas in a homogeneous organic phase in the presence of transition metal compounds of Group VIII of the Periodic Table containing complex-bound organophosphorus compounds, and excess organophosphorus compound, at temperatures of 70 to 160° C. and pressures of 5 to 35 MPa, and the 3(4),7(8)-bisformylbicyclo[4.3.0]nonane thus obtained is reductively aminated.
Abstract:
A process for selectively hydroformylating dicyclopentadiene to 8(9)-formyltricyclo-[5.2.1.02,6]dec-3-ene in a heterogeneous reaction system using an aqueous solution of transition metal compounds, containing water-soluble organic phosphorus(III) compounds in complex-bound form, of group VIII of the Periodic Table of the Elements, wherein the water-soluble organic phosphorus(III) compounds are alkali metal or alkaline earth metal salts of sulfonated arylphosphines and aryldiphosphines.
Abstract:
The present invention relates to a process for preparing aliphatic straight-chain and β-alkyl-branched carboxylic acids by catalytic oxidation of aldehydes by means of oxygen or oxygen-containing gas mixtures. Alkali metal carboxylates or alkaline earth metal carboxylates or a mixture thereof in an amount, calculated as alkali metal or alkaline earth metal, of from 1 mmol each to from 10 mmol each per mole of aldehyde used and also metals or compounds of metals of groups 5 to 11 of the Periodic Table of the Elements in amounts of not more than 5 ppm, based on aldehyde used, are present as catalyst.
Abstract:
The invention relates to a method for the synthesis of aliphatic carboxylic acids by the catalytic oxidation of aldehydes with oxygen, or oxygen-containing gas mixtures. Metals of groups 5 11 of the periodic table of elements, or the compounds thereof are used as catalyst, in amounts of up to 5 ppm, based upon the amount of aldehyde used.
Abstract:
A process for preparing saturated alcohols comprising effecting an aldol condensation of alkyl methyl ketones of 6 to 8 carbon atoms which are branched at the &bgr;-carbon atom with aldehydes of 4 to 15 carbon atoms which are branched at the &agr;-carbon atom to form &agr;,&bgr;-unsaturated ketones and subsequent hydrogenation of the &agr;,&bgr;-unsaturated ketones to obtain alcohols, wherein the aldol condensation is carried out at a temperature of 60 to 130° C. in the presence of a 30-55% strength aqueous solution of an alkali metal hydroxide resulting in very low by-product formation.