Abstract:
A slurry, chemical mechanical polishing (CMP) method using the slurry, and method of forming metal wiring using the slurry. The slurry may include a polishing agent, an oxidant, and at least one defect inhibitor to protect the metal film. The CMP method and method of forming metal wiring may employ one or two slurries with at least one of the slurries including at least one defect inhibitor.
Abstract:
The extract of Siegesbeckiae herba of the present invention showed potent inhibitory effect on the dissociation of proteoglycan and type II collagen in chondrocyte and cartilage tissue and protecting effect on cartilage due to the inhibition of MMP-1, MMP-3 and MMP-13 activity and the restoring effect on cartilage tissue, the anti-inflammatory and antiphlogistic effect in edema animal model, anti-inflammatory effect confirmed by the inhibition test on PGE2 activity through COX-2 inhibition and the inhibition test of the reproduction of TNF-α and NO, it can be used as the therapeutics or health food for treating and preventing arthritic disease.
Abstract:
A test pattern and a method of controlling a CMP using the same are provided. The test pattern is disposed on a monitoring region of a semiconductor substrate having a main region and a monitoring region. The test pattern includes a planar region and a pattern region. The method comprises setting a correlation between a step difference of a test pattern and an etched thickness of a main pattern, then applying the CMP to a semiconductor substrate having the test pattern and the main pattern for a predetermined time. The step difference of the test pattern is measured and the etched thickness of the main pattern, which corresponds to the step difference of the test pattern, is determined from the correlation. A polishing time is corrected by comparing the determined etched thickness of the main pattern with a reference value, and the corrected polishing time is applied to a subsequent lot or subsequent substrate.
Abstract:
A slurry delivery system, a chemical mechanical polishing (CMP) apparatus, and method for using the same are provided. An apparatus for supplying slurry to a polishing unit may include a first feed line through which an abrasive may be supplied at a first velocity. A velocity-changing member may be connected to the first feed line, and/or a velocity of the abrasive may be changed from the first velocity to. the second velocity different from the first velocity by the velocity-changing member. A second feed line may be connected to the velocity-changing member and/or an additive may be supplied through the second feed line. A supply line may be connected to the velocity-changing member. A slurry, which may be a mixture of the abrasive and/or the additive, may be supplied to a polishing unit through the supply line. Accordingly, the slurry may be more uniformly mixed and/or supplied to a polishing unit.
Abstract:
The present invention provides a recovery method using extendible hashing-based cluster logs in a shared-nothing spatial database cluster, which eliminates the duplication of cluster logs required for cluster recovery in a shared-nothing database cluster, so that recovery time is decreased, thus allowing the shared-nothing spatial database cluster system to continuously provide stable service. In the recovery method, if a failure occurs in a predetermined node, a second node in a group, including the node, records cluster logs in main memory on the basis of extendible hashing. If the node that has failed recovers itself using a local log, the second node in the group transmits cluster logs in packets to a recovery node that is the failed node. If the recovery node reflects the received cluster logs and maintains consistency with other nodes in the group, the recovery node resumes normal service.
Abstract:
A slurry, chemical mechanical polishing (CMP) method using the slurry, and method of forming metal wiring using the slurry. The slurry may include a polishing agent, an oxidant, and at least one defect inhibitor to protect the metal film. The CMP method and method of forming metal wiring may employ one or two slurries with at least one of the slurries including at least one defect inhibitor.
Abstract:
A method for manufacturing a capacitor is disclosed. An etch-stop layer or a polishing stop layer is employed to protect a storage electrode of the capacitor from being damaged by a chemical mechanical polishing process or an etch-back process during its fabrication.
Abstract:
The present invention relates to a complementary metal-oxide-semiconductor (CMOS) image sensor, comprising: a plurality of unit pixel arrayed in rows and columns, wherein the unit pixel including: (a) a charge generating means for generating charges in response to lights reflected from an object; (b) a first reset transistor for resetting the charge generating means; (c) a floating diffusion region receiving the charges from the charge generating means; and (d) a transfer transistor for receiving an address signal to transfer the charges from the charge generation means to the floating diffusion region; and a plurality of source following unit, each coupled to each column of unit pixel. And also, the present invention provides a driving method the CMOS image sensor.
Abstract:
A CMP oxide slurry includes an aqueous solution containing abrasive particles and two or more different passivation agents. Preferably, the aqueous solution is made up of deionized water, and the abrasive particles are a metal oxide selected from the group consisting of ceria, silica, alumina, titania, zirconia and germania. Also, a first passivation agent may be an anionic, cationic or nonionic surfactant, and a second passivation agent may be a phthalic acid and its salts. In one example, the first passivation agent is poly-vinyl sulfonic acid, and the second passivation agent is potassium hydrogen phthalate. The slurry exhibits a high oxide to silicon nitride removal selectivity.
Abstract:
The present invention, which relates to an apparatus for collecting data at multi-points, suggests an apparatus connecting analog blocks obtaining the same channel data in series with each other and connecting analog blocks obtaining different channel data in parallel with each other to collect data. The suggested apparatus includes a channel data collecting group including at least two channel data collecting units having data obtaining modules collecting channel data at different points and connected in series with each other; and a channel data processing unit including the channel data collecting units connected in parallel with each other and controlling each of the data obtaining module so as to allow each of the channel obtaining module to shift the channel data by a predetermined size.