Abstract:
The present invention is an acetabular cup having polyaxial locking screws for anchoring the cup in the desired bone site. The assembly includes an acetabular cup having axially tapered holes, into which holes coupling elements and bone screws may be inserted. The coupling elements each have an axial taper which matches the taper of the corresponding hole, and an interior semi-spherical concave surface in which the semi-spherical head of a corresponding bone screw may be polyaxially mounted. The bone screws are inserted through the holes until the coupling elements fully seat in the respective holes, thereby locking the screws in place and the coupling elements in the holes. In a preferred embodiment, the upper part of the holes further include annularly recessed channels in each of which a snap-ring is disposed. During the insertion of the bone screw, the advancing of the coupling element into the hole causes the snap-ring to expand. Once the coupling element is fully seated in the hole, the snap-ring contracts to its undeflected position and prevents the coupling element and screw from backing out of the hole in the event of loosening.
Abstract:
A modular polyaxial pedicle screw and orthopaedic rod implant device including same includes a shaft portion, a cuff, a stem portion, and a rod coupling sub-assembly. The shaft portion is designed to be inserted into the pedicle, has a hemispherical upper portion, and includes a second threading formed on the exterior surface adjacent to the hemispherical protuberance. The stem portion is a threaded post having an enlarged lower socket portion which includes a spherical recess formed at the base thereof, the recess being ideally suited to polyaxially rotate on the hemispherical upper portion of the shaft. The cuff is a cylindrical element designed to seat around the interface of the hemispherical portion of the shaft and the lower socket portion of the stem, initially so that the stem and shaft may polyaxially rotate relative to one another, and subsequently to hold the stem and shaft in final securement. The rod coupling sub-assembly consists of a rod coupling element which is mountable on the post portion of the stem, and a top locking nut which secures the rod coupling element to the post between the nut and the cuff. Spacer elements may be utilized which are positioned on the post between the cuff and the rod coupling element to permit axial variability on the stem in addition to the angular variability inherent in the shaft and stem interface.
Abstract:
A polyaxial orthopedic device for use with rod implant apparatus includes a screw having a curvate head, a locking collar disposed therearound, and a receiving member having a linearly tapered tapered socket in which the screw and the collar are nested. The locking collar is slotted and tapered, and has a semi-spherical interior volume into which the screw head is initially polyaxially held. The receiving member has a transverse channel formed in it for receiving a rod, and an axial bore having a linearly tapered chamber in the bottom portion thereof. The collar is inserted down the bore from the top to seat in the chamber, and the screw is subsequently inserted up through the bottom of the bore and into the collar. The linear taper of the chamber provides a radially inward force on the locking collar when the collar is forced downward therein. This radially inward force causes the locking collar to crush lock against the head of the screw, therein locking the two at the given angulation. It is the placement of the rod in the transverse channel, against the top of the collar, and the subsequent locking down of the rod in the channel which provides the downward force against the locking collar, which in turn locks the screw in its given angulation.
Abstract:
A polyaxial orthopedic device for use with rod implant apparatus includes a screw having a curvate head, a locking collar disposed therearound, and a receiving member having a linearly tapered tapered socket in which the screw and the collar are nested. The locking collar is slotted and tapered, and has a semi-spherical interior volume into which the screw head is initially polyaxially held. The receiving member has a transverse channel formed in it for receiving a rod, and an axial bore having a linearly tapered chamber in the bottom portion thereof. The collar is inserted down the bore from the top to seat in the chamber, and the screw is subsequently inserted up through the bottom of the bore and into the collar. The linear taper of the chamber provides a radially inward force on the locking collar when the collar is forced downward therein. This radially inward force causes the locking collar to crush lock against the head of the screw, therein locking the two at the given angulation. It is the placement of the rod in the transverse channel, against the top of the collar, and the subsequent locking down of the rod in the channel which provides the downward force against the locking collar, which in turn locks the screw in its given angulation.
Abstract:
A lamina hook is provided having a rod receiving body portion of variable length. Selected embodiments include a polyaxial coupling element for angulating the body portion. In each embodiment, the blade portion has a cylindrical recess and the body includes a shaft portion which is slideably mounted therein. The top of the cylindrical recess is slotted, threaded and tapered for receiving thereon a tightening nut; the tightening thereof being used to crush lock the shaft in the recess. In a first embodiment, the upper portion of the body includes a side loading rod receiving channel. The rod is locked within the channel by means of a sleeve and top locking nut. In a second embodiment, the shaft has a semi-spherical head on which a separate coupling element, having a lower, an intermediate, and an upper portion, is mounted. The lower portion has a slotted exterior taper and a semi-spherical interior chamber in which the head is initially polyaxially disposed. The intermediate portion has the side rod receiving channel. The top portion has a threading for receiving a top locking nut. A locking ring is disposed about the coupling element, at the top thereof, being initially positioned above the lower ledge of the recess such that the rod seats against it. As in the first embodiment, a sleeve and locking nut lock the rod in the recess; the process of doing which causes the locking ring to descend, crush locking the head in the interior chamber.
Abstract:
A hook device for use with support rod implantation apparatus in the spine, having a rod receiving body polyaxially mounted to a blade portion such that the body may be polyaxially maneuvered relative to the placement of the blade, for easy rod coupling. The blade portion of the device has a semi-spherical head portion which sits above the lamina. The rod receiving portion is a separate coupling element having lower, intermediate, and upper portions. The lower portion is slotted and tapered, and has a semi-spherical interior chamber in which the semi-spherical head is polyaxially disposed. The intermediate portion has a side recess for receiving the rod. The top portion is threaded for a top locking nut. A locking ring is disposed about the coupling element, the top of the coupling element being initially positioned above the lower ledge of the side recess such that the rod initially seats against the top surface of the locking ring. A rod retaining sleeve is provided about the coupling element; the sleeve having a lower surface which seats against the top of the rod. When the rod is in place, the top locking nut is tightened to provides a downward force onto the sleeve. The sleeve, in turn, applies a force against the rod, which causes the locking ring to descend down the tapered lower portion, therein locking the semi-spherical head in the interior chamber of the coupling element, and locking it into position relative to the blade portion.
Abstract:
A lamina hook device which has a rod receiving body portion of variable length. Selected embodiments include a polyaxial coupling element so that the rod receiving channel thereof may be angulated. In each embodiment, the blade portion has a cylindrical recess and the body includes a shaft portion which is slideably mounted therein. The top of the cylindrical recess is slotted, threaded, and tapered to receive a tightening nut. The tightening crush locks the shaft in the recess. In a first embodiment, the upper portion of the body includes a channel in which a rod is a disposed. The rod is locked within the channel by means of a top locking nut or an optional rod securing sleeve. In a second embodiment, the shaft has a semi-spherical head on which a separate coupling element, having a lower and an upper portion, is mounted. The lower portion has a slotted exterior taper and a semi-spherical interior chamber in which the head is initially polyaxially disposed. The upper portion has a channel therein for receiving the rod and a threading for receiving a top locking nut. A locking ring is disposed about the coupling element, at the top thereof, being initially positioned above the bottom of the channel such that the rod seats against the top of the locking ring. As in the first embodiment, a locking nut is provided, along with an optional rod securing sleeve to lock the rod in the recess; the process of doing which causes the locking ring to descend, crush locking the head in the interior chamber.
Abstract:
A polyaxial orthopedic device for use with rod implant apparatus includes a screw having a curvate head and a generally hollow coupling element. The coupling element includes an interior axial passage having an interior surface which is inwardly curvate at the lower portion thereof such that it comprises a socket for polyaxially retaining the curvate head of the screw. The coupling element further includes a pair of vertically oriented opposing channels extending down from the top of the coupling element, which define therebetween a rod receiving locus. The channel further divides the walls of the upper portion into a pair of upwardly extending members, each including an exterior threading disposed on the upper most portion for receiving a locking nut. During implantation of the assembly, the locking nut seats against the top of the rod, which in turn seats on the top of the screw head. Downward translation of the nut causes the rod to be locked between the nut and the screw and the screw to be locked in the socket. A preferred variation of the invention includes tapered upwardly extending members which deflect inward to additionally lock the rod from the sides.
Abstract:
An apparatus and method for collecting particulate bone from the operating site during an osteotomy or bone drilling procedure so that it can be used subsequently to augment the bone fusion process. A bone cutting or drilling tool is provided with a module for collecting particulate bone simultaneously with cutting or drilling the bone. The collected particulate bone is transferred continuously to a sterile containment module and maintained under sterile conditions until it is prepared for re-use in the patient.
Abstract:
An intervertebral spacer has curvate upper and lower rough surfaces that stimulate bone growth and is formed from a porous material that facilitates bone growth thereinto. The spacer has a plurality of smooth linear grooves to facilitate insertion of the spacer into an intervertebral space using a spacer insertion tool that has a scissor-style body. Each of the insertion tool's arm's heads has an inner surface having a pair of smoothed linear protrusions that fit within the linear grooves of the spacer when the heads are closed about the spacer. When the spacer is held, spaces are present between the spacer's rough surfaces and the heads' inner surfaces so that when the protrusions are longitudinally slid from the grooves to leave the spacer in the intervertebral spacer, the rough surfaces are not disturbed.