Abstract:
A method of forming a coating on a powdered substrate, which method comprises introducing an atomized liquid and/or solid coating forming material and separately transporting a powdered substrate to be coated into an atmospheric plasma discharge and/or an ionized gas stream resulting therefrom, and exposing the powdered substrate to the atomized liquid and/or solid coating forming material.
Abstract:
The invention relates to the generation of non-human transgenic animals comprising a reporter construct for producing a detectable amount of a reporter molecule operably linked to a transcriptional regulatory nucleic acid molecule from the human CYP3A4 gene located between the initiation of transcription site of the gene and a position located 13,000 nucleotides upstream from the site. The invention also relates to the use of these animals for determining the effect of a compound, particularly, but not exclusively, a xenobiotic or steroid, on the regulation of expression of the CYP3A4 gene in a human.
Abstract:
A method of forming a gel and/or powder of a metallic oxide, metalloid oxide and/or a mixed oxide or resin thereof from one or more respective organometallic liquid precursor(s) and/or organometalloid liquid precursor(s) by oxidatively treating said liquid in a non-thermal equilibrium plasma discharge and/or an ionised gas stream resulting therefrom and collecting the resulting product. The non-thermal equilibrium plasma is preferably atmospheric plasma glow discharge, continuous low pressure glow discharge plasma, low pressure pulse plasma or direct barrier discharge. The metallic oxides this invention particularly relates to are those in columns 3a and 4a of the periodic table namely, aluminium, gallium, indium, tin and lead and the transition metals. The metalloids may be selected from boron, silicon, germanium, arsenic, antimony and tellurium. Preferred metalloid oxide products made according to the process of the present invention are in particular oxides of silicon including silicone resins and the like, boron, antimony and germanium.
Abstract:
A computer- and software-based apparatus and method is disclosed for managing and presenting information as a domain of data objects which can be grouped according to their category or “object type,” and which can be associated with other data objects, of same or differing object types, according to a myriad of relationship types. The system and method present the network of objects using a computer-generated graphical user interface (GUI) which may comprise a series of tables or trees or other means for representing a set. The invention provides for display of a primary object set comprising a plurality of primary data objects sharing a common object type. On the same or a related GUI display, a plurality of other object sets, known as “secondary object sets,” are displayed in order to present data objects related to the data objects of the primary object set. When a data object in the primary set is selected (by cursor or similar means), each of the secondary object sets will display data object related to the selected data item in the primary set. This “relationship traversal” allows the user to explore the network and ascertain relationships between data objects. The system and method also provide various additional functions to explore and analyze the data, including sorting, attribute filtering, context filtering and view pivoting. Relationship traversal and the additional functions allow the user to view structure and detail at the same time, and to engage in “data mining” to appreciate previously unappreciated relationships between discrete data objects.
Abstract:
A process and apparatus are described for producing drawstring packets. The packets are produced by forming thread loops (L) with tags (T) attached to their ends and placing the packet web material (W) onto the portions of a the loops further from the tags. After securing the loops in their shaped form temporarily to one face of the web, the tags and the remaining portions of thread are placed on the other face of the web to be attached there releasably. In subsequent processing the secured loop portions lie inside the packets and the tags outside. The process allows relatively precise location of the loops so that packets can be produced with the loops in a peripheral channel (P) sealed from the contents of the packets but able to move to contract the package when the ends of the loop are pulled.
Abstract:
A method and apparatus are described for tag and thread assembly for tagged infusion packets. Spaced tags from a strip of tags and a length of thread are laid over each other on the periphery of a first assembly wheel and the thread is drawn out in loops between successive tags. The spaced tags and looped thread are transferred to a second assembly wheel where they are connected to a web of sheet material that is to form the infusion packets. The web is subsequently formed into a series of compartments in which infusion material is contained. The compartments are severed from the web for forming the individual packets and the thread is simultaneously severed between the packets.
Abstract:
A method and apparatus are described for tag and thread assembly for tagged infusion packets. Spaced tags from a strip of tags and a length of thread are laid over each other on the periphery of a first assembly wheel and the thread is drawn out in loops between successive tags. The spaced tags and looped thread are transferred to a second assembly wheel where they are connected to a web of sheet material that is to form the infusion packets. The web is subsequently formed into a series of compartments in which infusion material is contained. The compartments are severed from the web for forming the individual packets and the thread is simultaneously severed between the packets.