Abstract:
An optical filter is provided having first and second graded index (GRIN) lenses preferably disposed in a coaxial relationship so that they have a common optical axis. Each of the GRIN lenses has an end face providing a port at predetermined location. The ports are disposed on opposite sides of the optical axis and each of the ports is substantially equidistant from the optical axis, so as to be oppositely offset from the optical axis by a same amount. The filter also includes an optical interference filter disposed between other end faces of the first and second graded index lenses. By providing at least four spaced ports, equidistant from the optical axis, such that two ports form a first couplet on opposite sides of the axis from each other and such that two other ports form a second couplet on opposite sides of the axis from each other, wherein one of the ports of one couplet is optically coupled with one of the ports from the other couplet, an add and drop circuit may be realized. The notion of multi-use of an optical filter applies not only to an add and drop circuit, but also other WDM devices which use several optical filters of a same type.
Abstract:
Embodiment of present invention provide a wavelength division multiplexing (WDM) module. The WDM module includes a substrate having a first side and a second side opposing the first side, wherein the first side includes a transpassing region coated with an anti-reflective (AR) film and a reflective region coated with a high-reflective (HR) film, and the second side includes multiple ports of optical paths; multiple WDM filters attached to the multiple ports at the second side of the substrate, wherein surfaces of the WDM filters attached to the substrate are coated with WDM films; and at least one reflector attached to the second side of the substrate in a space between the multiple WDM filters, wherein the reflector has a first surface attached to the substrate and a second surface, opposing the first surface, that has a convex shape and coated with a high-reflective (HR) coating.
Abstract:
Embodiment of present invention provide a wavelength division multiplexing (WDM) module. The WDM module includes a substrate having a first side and a second side opposing the first side, wherein the first side includes a transpassing region coated with an anti-reflective (AR) film and a reflective region coated with a high-reflective (HR) film, and the second side includes multiple ports of optical paths; multiple WDM filters attached to the multiple ports at the second side of the substrate, wherein surfaces of the WDM filters attached to the substrate are coated with WDM films; and at least one reflector attached to the second side of the substrate in a space between the multiple WDM filters, wherein the reflector has a first surface attached to the substrate and a second surface, opposing the first surface, that has a convex shape and coated with a high-reflective (HR) coating.
Abstract:
Embodiment of present invention provide an optical interconnect apparatus. The apparatus includes an optical signal path; a first set of pigtail fibers attached to a first end of the optical signal path via a first wavelength-division-multiplexing (WDM) filter; and a second set of pigtail fibers attached to a second end of the optical signal path via a second WDM filter. Embodiment of present invention further provide an interconnected optical system that includes a first optical transport terminal having a first set of optical signal ports and a second optical transport terminal having a second set of optical signal ports, with the two sets of optical signal ports being interconnected by the optical interconnect apparatus.
Abstract:
Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a first and a second reflectively terminated element and an optical switch being capable of selectively connecting to one of the first and second reflectively terminated elements, and wherein the at least one of the plurality of dispersion compensation units is adapted to provide a substantially zero dispersion to an optical signal, coming from the multi-port optical circulator, when the optical switch connects to the first reflectively terminated element and is adapted to provide a non-zero dispersion to the optical signal when the optical switch connects to the second reflectively terminated element.
Abstract:
Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a first and a second reflectively terminated element and an optical switch being capable of selectively connecting to one of the first and second reflectively terminated elements, and wherein the at least one of the plurality of dispersion compensation units is adapted to provide a substantially zero dispersion to an optical signal, coming from the multi-port optical circulator, when the optical switch connects to the first reflectively terminated element and is adapted to provide a non-zero dispersion to the optical signal when the optical switch connects to the second reflectively terminated element.
Abstract:
Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator; and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a fiber-bragg grating (FBG) having a first port and a second port; and an optical switch being capable of selectively connecting to one of the first port and the second port of the FBG, wherein the at least one of the plurality of dispersion compensation units is adapted to provide a positive dispersion to an optical signal, from the multi-port optical circulator, when the optical switch connects to the first port of the FBG and is adapted to provide a negative dispersion to the optical signal when the optical switch connects to the second port of the FBG.
Abstract:
A novel optical time division multiplexing (OTDM) module based on hybrid-integrated optical chips is disclosed. An integrated modulator chip generates optical RZ signal streams which are then interleaved in an integrated time-delay chip to produce an OTDM signal. The integrated modulator chip is coupled and secured to the integrated time-delay chip via a suitable optical index-matching layer or collimating lenses. Such an approach alleviates the stability problems offered by conventional fiber-based OTDM technology and aids in reducing the size and complexity as well as lowering the cost for the assembly. Furthermore, the time-delay chip of the present invention offers fine tuning capabilities thereby allowing for slight adjustments in the interleaving of optical signal streams when non-standard data transmission rates are required.
Abstract:
According to the invention there is provided a method of controlling an optical communication system comprising an optical transmitter, an optical receiver and an optical fiber interconnecting the optical transmitter and the optical receiver, the method comprising determining the performance of the optical communication system and controlling at least one setting parameter of the optical transmitter according to the measured performance.
Abstract:
Systems and methods for providing compact dispersion compensation modules. In one implementation, a dispersion compensation module includes a polarizer having a first port, a second port, and a third port. The dispersion compensation module also includes a reflection etalon and a quarter-waveplate positioned between the reflection etalon and the second port of the polarizer.