摘要:
Embodiment of present invention provide a micro-optics module. The module includes a glass body of pentagon shape having five side surfaces including an upper side surface, a left side and a right side surface next to the upper side surface, a lower side surface next to the left side surface, and a 5th side surface next to and between the lower side surface and the right side surface. The glass body is adapted to, upon incident of a first optical signal at the left side surface, cause the first optical signal to propagate toward and exit the glass body at the right side surface and, upon incident of a second optical signal at the right side surface, cause the second optical signal to reflect back at the left side surface; reflect back at the 5th side surface; and finally exit the glass body at the upper side surface.
摘要:
A centrifugal fan is provided. The centrifugal fan includes an impeller and a housing. The impeller has an impeller diameter. The housing includes an upper plate, a lower plate and a side wall, wherein the upper plate axially corresponds to the lower plate, a side wall is formed between the upper plate and the lower plate, an axial inlet is formed on the upper plate, a lateral outlet is formed on the side wall, the impeller is disposed in the housing and corresponds to the inlet, and a flow path communicates the inlet to the outlet, wherein a greatest width of the inlet is greater than or equal to the impeller diameter.
摘要:
Embodiments of present invention provide a method of forming nano-parts through vacuum coating technology. The method includes creating a set of openings in a substrate, the set of openings having a set of shapes that are complimentary to shapes of a set of nano-parts and the nano-parts having a size between 1 nm and 1000 nm; lining the set of openings with a thin layer of oleic acid of a single molecule thickness; depositing a metal-oxide material inside the set of openings to form the set of nano-parts; immersing the substrate together with the set of nano-parts in a solution; applying a supersonic vibration to the substrate via the solution causing the set of nano-parts to detach from the substrate; and separating the set of nano-parts from the substrate.
摘要:
A method for processing a high-k dielectric layer includes the following steps. A semiconductor substrate is provided, and a high-k dielectric layer is formed thereon. The high-k dielectric layer has a crystalline temperature. Subsequently, a first annealing process is performed, and a process temperature of the first annealing process is substantially smaller than the crystalline temperature. A second annealing process is performed, and a process temperature of the second annealing process is substantially larger than the crystalline temperature.
摘要:
A semiconductor device includes: a substrate having a first region and a second region; a first gate structure disposed on the first region, wherein the first gate structure comprises a first high-k dielectric layer, a first work function metal layer, and a first metal layer disposed between the first high-k dielectric layer and the first work function metal layer; and a second gate structure disposed on the second region, wherein the second gate structure comprises a second high-k dielectric layer, a second work function metal layer, and a second metal layer disposed between the second high-k dielectric layer and the second work function metal layer, wherein the thickness of the second metal layer is lower than the thickness of the first metal layer.
摘要:
A multivariable solver for proximity correction uses a Jacobian matrix to approximate effects of perturbations of segment locations in successive iterations of a design loop. The problem is formulated as a constrained minimization problem with box, linear equality, and linear inequality constraints. To improve computational efficiency, non-local interactions are ignored, which results in a sparse Jacobian matrix.
摘要:
A manufacturing method for a metal gate includes providing a substrate having at least a semiconductor device with a conductivity type formed thereon, forming a gate trench in the semiconductor device, forming a work function metal layer having the conductivity type and an intrinsic work function corresponding to the conductivity type in the gate trench, and performing an ion implantation to adjust the intrinsic work function of the work function metal layer to a target work function.
摘要:
A method for fabricating a high voltage semiconductor device is provided. Firstly, a substrate is provided, wherein the substrate has a first active zone and a second active zone. Then, a first ion implantation process is performed to dope the substrate by a first mask layer, thereby forming a first-polarity doped region at the two ends of the first active zone and a periphery of the second active zone. After the first mask layer is removed, a second ion implantation process is performed to dope the substrate by a second mask layer, thereby forming a second-polarity doped region at the two ends of the second active zone and a periphery of the first active zone. After the second mask layer is removed, a first gate conductor structure and a second gate conductor structure are formed over the middle segments of the first active zone and the second active zone, respectively.