Abstract:
A component for an electric machine includes a spool having a main body portion provided with a first end portion that extends substantially uninterrupted to a second end portion through an intermediate portion. A plurality of mounting elements are provided on the first end portion. A star member is operatively connected to the spool. The star member includes a main body, a plurality of flap members that extend from the main body and collectively define a central opening, and a plurality of mounting members that extend into the central opening. The plurality of mounting members engage with corresponding ones of the plurality of mounting elements to detachably mount the star member to the first end portion of the spool.
Abstract:
Disclosed is an improved stator for a dynamoelectric machine including a stator core which has a plurality of core slots extending axially from a first end of the stator core to a second end of the stator core. The stator also includes a stator winding having a plurality of phases. Each phase of the stator winding includes at least a first filar. The first filar extends around the stator core and form a plurality of layers and has a plurality of slot segments disposed in the plurality of core slots. The slot segments are alternately connected at the first and second ends of the stator core by a plurality of end loop segments. The slot segments are configured such that at least two consecutive slot segments are disposed in substantially the same radial position relative to additional slot segments of the plurality of slot segments disposed in the respective core slots, and the at least two consecutive slot segments are disposed at differing radial distances from a central axis of the stator core.
Abstract:
A dynamoelectric machine insulator includes, a body having a plurality of holes therethrough at least some of the plurality of holes being receptive of a lead such that a lead extending through each of the plurality of holes is electrically isolated from a lead extending through each of the other of the plurality of holes, and at least one channel in the body extending arcuately along a perimetrical extent of the body. The at least one channel configured and dimensioned to insulate at least one lead routed therein.
Abstract:
Disclosed herein is an electric machine stator. The electric machine stator includes a tubular body with a plurality of radial slots formed into a perimetrical surface thereof, each of the plurality of slots having a width that varies over at least a portion of a radial depth of the slot such that the slot width is narrower near the perimetrical surface than the slot width further from the perimetrical surface. The stator further includes at least one winding positioned within each of the plurality of slots and at least one of the at least one winding is deformed within the slot such that at least one dimension of the at least one winding is greater than a narrowest slot width dimension thereby retaining the winding within the slot.
Abstract:
Disclosed is an improved stator for a dynamoelectric machine including a stator core which has a plurality of core slots extending axially from a first end of the stator core to a second end of the stator core. The stator also includes a stator winding having a plurality of phases. Each phase of the stator winding includes at least a first filar. The first filar extends around the stator core and form a plurality of layers and has a plurality of slot segments disposed in the plurality of core slots. The slot segments are alternately connected at the first and second ends of the stator core by a plurality of end loop segments. The slot segments are configured such that at least two consecutive slot segments are disposed in substantially the same radial position relative to additional slot segments of the plurality of slot segments disposed in the respective core slots, and the at least two consecutive slot segments are disposed at differing radial distances from a central axis of the stator core.
Abstract:
Disclosed is a terminal assembly for a stator of a dynamoelectric machine. The terminal assembly includes a at least five electrically conductive tracks arrayed in a single layer, each track configured and positioned for electrical communication with corresponding leads extending from the stator providing electrical connection between at least one lead of stator leads and a rectifier bridge. The tracks are at least partially encapsulated in a nonconductive casing.
Abstract:
An automotive alternator including a rotor having a plurality of poles; a plurality of phases in operable communication with the plurality of poles; and a stator core in operable communication with the rotor, the stator having a number of slots defined by: S=(P×PH)+((M×PH)+N)where S=number of slots P=number of poles PH=number of phases M=a whole integer greater than or equal to 0 N=a whole integer selected from a group of integers ranging from, and including, 1 through the number of phases minus 1. A method for reducing magnetic noise in an automotive alternator includes selecting a number of poles, selecting a number of phases, selecting a number of stator core slots, the foregoing selections interacting in the automotive alternator to produce an order of frequency of a tangential force different than any multiple of the number of phases and different than an order of frequency of a radial force of the alternator.
Abstract:
A stator for an electric machine includes a generally cylindrically-shaped stator core having a plurality of core teeth that define a plurality of core slots, the core slots extend between first and second ends of the stator core. A stator winding has a plurality of phases, N, each phase including at least one conductor having a plurality of slot segments housed in the core slots, the slot segments are alternately connected at the first and second ends by a plurality of end loop segments. At least one conductor has a slot segment that is switched with an adjacent conductor such that the conductor has an end loop segment having a pitch equal to N+1 and the end loop segment of the adjacent conductor has a pitch equal to N−1, wherein the end loop segments of the conductor and the adjacent conductor do not cross one another. The stator also reduces overall noise of an electric machine.
Abstract:
A stator for a dynamoelectric machine improves the cooling of the stator winding without increasing the size of the stator winding or the entire stator. The stator is of a unique construction wherein the size, and more specifically the cross sectional area or volume of the individual conductors is greatly reduced, while the total number of conductors is increased. In addition, a multiple filar construction is employed to avoid the potential for high levels of inductance and resistance in the conductors and to minimize the interference between the cascaded stator end loops and the housing that surrounds the stator.