Abstract:
Methods and systems for calibrating seismic sensors configured or designed for use in seismic signal detection. According to certain embodiments of the present disclosure, a current is injected into a moving coil of a seismic sensor and a voltage is measured across the moving coil. The moving coil is locked by the injected current such that environmental noise is reduced while measuring the moving coil voltage.
Abstract:
Methods and systems for determining coil eccentricity of seismic sensors configured or designed for use in seismic signal detection. A direct electrical current is applied to a moving coil of a seismic sensor such that the moving coil is dislocated from a neutral position relative to the magnetic field in the seismic sensor. A predetermined indicator is measured and eccentricity of the coil (δ) relative to the center of the magnetic filed is determined using the predetermined indicator.
Abstract:
The present invention provides an apparatus and method for sensing subsurface data. One embodiment of the invention comprises a shuttle attached to a conveyance where the conveyance and shuttle are adapted to be spooled downhole into a borehole for sensing seismic data. The shuttle contains a sensor package that is preferably acoustically isolated in the shuttle. The sensor package includes a sensor array and a magnet clamp. A sensor section can contain several shuttles, each shuttle containing at least one sensor. In one embodiment, the sensor can be a fiber optic sensor. The magnet clamp is operable to controllably clamp and acoustically couple together the sensor package, the shuttle, and the adjacent structure which is typically the borehole casing. The magnet clamp is likewise operable to unclamp and uncouple the shuttle from the adjacent structure so as to be retracted uphole for subsequent use.
Abstract:
Methods and apparatus for creating a velocity profile of a formation surrounding a borehole by checkshot measurements while moving the tool along the borehole. A conveyance and a sensor section are configured to move the sensor section in the borehole. At least one receiver is configured to detect signals generated at or near the surface while the sensor section is moving in the borehole.
Abstract:
Various techniques are described which may be used to facilitate and improve seismic exploration activities. For example, one aspect of the present invention is directed to a technique for enabling in-situ measurement of geophone response parameters. Another aspect of the present invention is directed to a technique for improving geophone calibration and for improving the accuracy of measurement of geophone response parameters. Yet another aspect of the present invention is directed to a technique for compensating geophone response output data in order to improve the accuracy of such data.
Abstract:
The present disclosure provides, among other things, apparatuses and methods for sensing subsurface data. One embodiment comprises borehole conveyance system tool, the borehole conveyance system tool comprising a conveyance, a sensor array disposed on the conveyance, and an acquisition electronics section disposed on the conveyance distal of the sensor array. One embodiment includes at least one downhole tension sensor to help indicate when a tool is stuck and what part of the tool is stuck.
Abstract:
The present invention provides an apparatus and method for sensing subsurface data. One embodiment of the invention comprises a shuttle attached to a conveyance where the conveyance and shuttle are adapted to be spooled downhole into a borehole for sensing seismic data. The shuttle contains a sensor package that is preferably acoustically isolated in the shuttle. The sensor package includes a sensor array and a magnet clamp. A sensor section can contain several shuttles, each shuttle containing at least one sensor. In one embodiment, the sensor can be a fiber optic sensor. The magnet clamp is operable to controllably clamp and acoustically couple together the sensor package, the shuttle, and the adjacent structure which is typically the borehole casing. The magnet clamp is likewise operable to unclamp and uncouple the shuttle from the adjacent structure so as to be retracted uphole for subsequent use.
Abstract:
Subterranean oilfield sensor systems and methods are provided. The subterranean oilfield sensor systems and methods facilitate downhole monitoring and high data transmission rates with power provided to at least one downhole device by a light source at the surface. In one embodiment, a system includes uphole light source, a downhole sensor, a photonic power converter at the downhole sensor, an optical fiber extending between the uphole light source and the photonic power converter, and downhole sensor electronics powered by the photonic power converter. The photonic power converter is contained in a high temperature resistant package. For example, the high temperature resistant package and photonic power converter may operate at temperatures of greater than approximately 100° C.
Abstract:
The present invention provides methods and apparatus for measuring subterranean strain. The methods and apparatus use fluid expansion principles to compensate for temperature variations and increase the accuracy of the strain measurements. The methods and apparatus contemplate the use of multiple fluid chambers according to some embodiments in order to remove temperature dependence from stress or strain measurements.
Abstract:
A downhole seismic exploration device comprises a seismic detector such as a geophone and a magnetic clamp, supported by Q-rings in an open cradle carrier which can be secured to a cable linking several such devices into an array. The array is lowered into a cased borehole and the magnetic clamps are operated to clamp the devices temporarily to the casing. Seismic signals detected by the geophones are transmitted to the surface via the cable, the O-ring supports acting to reduce or eliminate transmission of vibrations from the borehole fluid and the cable via the carrier to the geophone. The array is then unclamped and moved to another location in the borehole and the operation repeated. The magnetic clamp comprises a rotatable permanent magnet with radial poles disposed between a pair of parallel pole piece plates protruding on each side of the device and separated by non-magnetic blocks on each side of the magnet. When the magnet poles are aligned parallel to the pole piece plates the magnetic flux extends along closed paths entirely within the pole pieces and there is no clamping action. When the magnet is rotated 90.degree. by a small motor the magnetic flux extends along the pole pieces and out of the device, clamping the device by magnetic attraction to the casing. A piezo bimorph element can be operated to vibrate the device to test the quality of the clamping before the acquisition of seismic data.