Abstract:
This invention relates to electrical power systems, including generating capacity of a gas turbine, and more specifically to augmentation of power output of gas turbine systems, that is useful for providing additional electrical power during periods of peak electrical power demand.
Abstract:
The present invention discloses a novel modular system and methods of operating an increased air supply to a gas turbine engine such that the upon supplying a source of external air to the system, a bias is added to the exhaust temperature such that a firing temperature with air injection is substantially equivalent to the firing temperature without air injection.
Abstract:
Electrical power systems, including generating capacity of a gas turbine, where additional electrical power is generated utilizing a separately fueled system during periods of peak electrical power demand.
Abstract:
The present invention discloses a novel apparatus and methods for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in power augmentation and engine operation include systems and methods for preheating piping of a power augmentation system and directing flows of hot compressed air, steam or a combination thereof into the gas turbine engine.
Abstract:
The present invention discloses a novel apparatus and methods for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in power augmentation and engine operation include systems and methods for preheating a steam injection system.
Abstract:
The present invention discloses a novel apparatus and methods for controlling an air injection system for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in control of the air injection system include ways directed towards preheating the air injection system, including using an gas turbine components, such as an inlet bleed heat system to aid in the preheating process.
Abstract:
Gas turbine power plants augmented with an air injection system for hot air injection to augment power and are used to drive sensitive cogeneration processes are fitted with compressed air storage capability to more smoothly ramp on air injection in the event of sudden and unexpected interruption of the air injection system. Utilizing stored hot air injection prior to starting an air injection system significantly reduces the start-up time of the air injection system.
Abstract:
Systems and methods to control gas turbine firing temperatures during air injection. A method of achieving a desired firing temperature of a gas turbine engine during air injection comprises injecting compressed air into the gas turbine engine using an external source. The external source includes a compressor and a recuperator. The method comprises using a controller of the gas turbine engine to: (a) determine an air injection exhaust bias gain using an inlet temperature of the gas turbine engine; (b) calculate, based on the determined air injection exhaust bias gain and a flow rate of the injected compressed air, an air injection exhaust curve bias; and (c) change a fuel flow of the gas turbine engine by adding the air injection exhaust curve bias to an existing exhaust curve of the gas turbine engine to thereby achieve the desired firing temperature during air injection.
Abstract:
The present invention discloses a novel modular system and methods of operating an increased air supply to a gas turbine engine such that the upon supplying a source of external air to the system, a bias is added to the exhaust temperature such that a firing temperature with air injection is substantially equivalent to the firing temperature without air injection.
Abstract:
The invention relates generally to an electrical power and storage system and more specifically to ways and methods of using a thermal storage medium as a heat source to heat compressed air from a power augmentation system for use in a gas turbine engine.