Abstract:
The invention relates generally to electrical power systems or steam generator systems including generating capacity of a coal plant where specific emissions and power is improved with an alternately fueled engine driving one or more air processes.
Abstract:
The invention relates generally to gas turbine engines used for electrical power generation. More specifically, embodiments of the present invention provide systems and ways for improving gas turbine engine reliability through an electric motor backup system for cooling features of the turbine section.
Abstract:
The present invention discloses a novel apparatus and methods for providing a flow of cooling air to one or more turbine nozzles or turbine blade outer air seals. The flow of cooling air is provided by an external source and regulated in order to improve turbine nozzle and air seal cooling efficiency and component life.
Abstract:
Gas turbine power plants augmented with an air injection system for hot air injection to augment power and are used to drive sensitive cogeneration processes are fitted with compressed air storage capability to more smoothly ramp on air injection in the event of sudden and unexpected interruption of the air injection system. Utilizing stored hot air injection prior to starting an air injection system significantly reduces the start-up time of the air injection system.
Abstract:
Electrical power systems, including generating capacity of a gas turbine, where additional power is generated from an air expander and gas turbine simultaneously from a stored compressed air and thermal system.
Abstract:
The invention relates generally to gas turbine engines used for electrical power generation. More specifically, embodiments of the present invention provide systems and ways for improving the life and reducing start-up time necessary for bringing gas turbine engines online and up to full power.
Abstract:
The present invention discloses a novel modular cooling system for cooling an air injection system where the cooling system is configured to conform generally to the foot print of the air injection system. The cooling system utilizes a plurality of coolers through which coolant from the air injection system passes prior to being recirculated back to the air injection system.
Abstract:
The present invention discloses embodiments for a power augmentation system of a gas turbine engine resulting in performance improvements while also improving efficiency. The invention provides systems and methods for generating a heated air supply by way of mixing compressed air from an electrically-driven process with air drawn from the engine compressor discharge plenum.
Abstract:
The invention relates generally to electrical power systems, including generating capacity of a gas turbine, and more specifically to pressurized air injection that is useful for providing additional electrical power during periods of peak electrical power demand from a gas turbine system power plant, as well as to inlet heating to allow increased engine turn down during periods of reduced electrical demand
Abstract:
Electrical power systems, including generating capacity of a gas turbine are provided, where additional electrical power is generated utilizing a separate engine and auxiliary air injection system. The gas turbine and separate engine can operate on different fuel types.