摘要:
A method is provided for reducing levels of tobacco specific nitrosamines (TSNA) in tobacco during barn curing. The method includes contacting tobacco with chlorate, sulfur, ozone or combinations thereof in amounts effective for controlling or reducing bacterial an/or fungal populations on or in tobacco.
摘要:
The present disclosure provides for a device, as well as a system and method associated therewith, for, among other things, providing: (i) up to five distinct measurement angles along with an illumination reference channel; (ii) a plurality of illumination sources that provide a focused beam of illumination at specific desired angles of incidence to a sample under target; (iii) a shutter mechanism incorporating a calibration transfer standard; (iv) an internal optical system that is operatively associated with a gimbaled structure suitable to allow vertical and angular conformity to a target sample; and (v) a handheld and operated enclosure incorporating a user interface with a visual display unit complete with interactive navigation means and an activation switch, and a number of surface detecting contact elements operatively associated with the optical system and shutter mechanism.
摘要:
A pump housing that contains a pump that draws fuel from an underground storage tank containing fuel to deliver to fuel dispensers in a service station environment. The pump is coupled to a double-walled fuel pipe that carries the fuel from the pump to the fuel dispensers. The double-walled fuel piping contains an inner annular space that carries the fuel and an outer annular space that captures any leaked fuel from the inner annular space. The outer annular space is maintained through the fuel piping from the pump to the fuel dispensers so that the outer annular space can be pressurized by a pump to determine if a leak exists in the outer annular space or so that fuel leaked from the inner annular space can be captured by a leak containment chamber in the pump housing.
摘要:
A pump housing that contains a pump that draws fuel from an underground storage tank containing fuel to deliver to fuel dispensers in a service station environment. The pump is coupled to a double-walled fuel pipe that carries the fuel from the pump to the fuel dispensers. The double-walled fuel piping contains an inner annular space that carries the fuel and an outer annular space that captures any leaked fuel from the inner annular space. The outer annular space is maintained through the fuel piping from the pump to the fuel dispensers so that the outer annular space can be pressurized by a pump to determine if a leak exists in the outer annular space or so that fuel leaked from the inner annular space can be captured by a leak containment chamber in the pump housing.
摘要:
A system and method for calculating the flow rate of a dispensing point or flow capacity of a pump and fuel delivery system and determining if the dispensing point or fuel delivery system has a blockage and/or a performance problem if the calculated dispensing point flow rate is other than expected. The calculated dispensing flow rate is calculated by collecting fuel tank level data points for a dispensing point that fall within start and stop events of the dispensing event. The slope of a fitted line to the fuel tank level data points is used as the indication of the flow rate of the dispensing point. Different mathematical techniques may be used to improve the flow rate calculation to compensate for the minimum resolution of collecting fuel tank level data and the dead time included in the data of a dispensing transaction.
摘要:
Determining a maximum dispensing efficiency of a dispensing point in a fuel dispenser and determining if a dispensing point has a blockage and/or a performance problem if the maximum dispensing efficiency is less than expected. The maximum dispensing efficiency is calculated by determining the dispensing events exhibiting the lowest time for dispensed volume from a set of volume and time pair measurements for the dispensing point. The dispensing events exhibiting the lowest time for dispensed volume that are used to determine the maximum dispensing efficiency are taken from dispensing events where the amount of dead time, the time between the activation of a fuel dispensing event and the engaging of a nozzle and the time between the disengaging of the nozzle and the deactivation of the dispensing event, and customer or pre-pay transaction controlled reduced flow rates are minimized. In this manner, volume and time data that include more than the minimum amount of dead time in a dispensing event are not used in the determination of the maximum dispensing efficiency.