Abstract:
Embodiments of the present disclosure relate to an impedance matching component and a hybrid wave-absorbing material. The impedance matching component is disposed between a first medium and a second medium, and comprises a plurality of functional sheet layers. Impedances of the functional sheet layers vary continuously in a stacking direction of the functional sheet layers, with the impedance of a first one of the functional sheet layers being identical to that of the first medium and the impedance of a last one of the functional sheet layers being identical to that of the second medium.
Abstract:
Complementary metamaterial elements provide an effective permittivity and/or permeability for surface structures and/or waveguide structures. The complementary metamaterial resonant elements may include Babinet complements of “split ring resonator” (SRR) and “electric LC” (ELC) metamaterial elements. In some approaches, the complementary metamaterial elements are embedded in the bounding surfaces of planar waveguides, e.g. to implement waveguide based gradient index lenses for beam steering/focusing devices, antenna array feed structures, etc.
Abstract:
The disclosure relates to a metamaterial antenna, where the metamaterial antenna includes an enclosure, a feed, a first metamaterial that clings to an aperture edge of the feed, a second metamaterial that is separated by a preset distance from the first metamaterial and is set oppositely, and a third metamaterial that clings to an edge of the second metamaterial, where the enclosure, the feed, the first metamaterial, the second metamaterial, and the third metamaterial make up a closed cavity; and a central axis of the feed penetrates center points of the first metamaterial and the second metamaterial; and a reflection layer for reflecting an electromagnetic wave is set on surfaces of the first metamaterial and the second metamaterial, where the surfaces are located outside the cavity.
Abstract:
A front feed satellite television antenna includes a metamaterial panel. The metamaterial panel includes a core layer and a reflective panel. The core layer includes a core layer lamella which further includes a circular area and multiple annular areas distributed around the circular area. Within the circular area and the annular areas, refractive indexes are identical at a same radius, and within the respective areas, the refractive indexes decrease gradually as radius increases. The minimum refractive index of the circular area is less than the maximum the refractive index of the annular area adjacent thereto. For two adjacent annular areas, the minimum refractive index of the annular area at the inner side is less than the maximum refractive indexes of the annular area at the outer side. The metamaterial panel can replace conventional parabolic antenna, thus facilitating manufacturing and processing, and further reducing costs.
Abstract:
The present disclosure discloses an antenna device, which comprises an array antenna and a power divider. The array antenna comprises a plurality of antenna units, and each of the antenna units comprises a conductive sheet engraved with a groove topology pattern, conductive feeding points and a feeder line. The power divider is adapted to divide a baseband signal into a plurality of weighted signals and then transmit the weighted signals to the antenna units arranged in an array via the conductive feeding points respectively. By arraying the antenna units and using the beam forming method, the directionality of the antenna can be designed as needed through phase superposition between the antenna units; and then, a reflective metal plate is provided on the back side of the antenna so that a back lobe of the antenna is compressed. In this way, the miniaturized antenna array can obtain a high directionality.
Abstract:
An artificial electromagnetic material includes at least one material sheet. Each material sheet includes a substrate and a plurality of artificial microstructures attached to the substrate. Each substrate is virtually divided into multiple of substrate units arranged into an array. A pair of artificial microstructures is attached to each substrate. The pair of artificial microstructures includes a first artificial microstructure and a second artificial microstructure with different shapes. The dielectric constant of artificial electromagnetic materials gradually increases from zero in a certain frequency range, therefore the material has a low dielectric constant in the certain frequency range and can meet some needs of special situation.
Abstract:
The present invention provides an artificial microstructure including a first metal wire, a second metal wire parallel to the first metal wire, at least one first metal wire branch and at least one second metal wire branch. The at least one first metal wire branch and the at least one second metal wire branch are distributed in an interlacement arrangement. One end of the at least one first metal wire branch is connected to the first metal wire; the other end is a free end facing towards the second metal wire. One end of the at least one second metal wire branch is connected to the second metal wire, and the other end of the at least one second metal wire is a free end facing towards the first metal wire. The present invention also discloses a metamaterial with the artificial microstructures.
Abstract:
The present invention relates to a metamaterial and a metamaterial antenna. The metamaterial is disposed in a propagation direction of the electromagnetic waves emitted from a radiation source. A line connecting the radiation source to a point on a first surface of the metamaterial and a line perpendicular to the metamaterial form an angle θ therebetween, which uniquely corresponds to a curved surface in the metamaterial. Each point on the curved surface to which the angle θ uniquely corresponds has a same refractive index. Refractive indices of the metamaterial decrease gradually as the angle θ increases. The electromagnetic waves propagating through the metamaterial exits in parallel from a second surface of the metamaterial. The refraction, diffraction and reflection at the abrupt transition points can be significantly reduced in the present disclosure and the problems caused by interferences are eased, which further improves performances of the metamaterial and the metamaterial antenna.
Abstract:
The present invention relates to a man-made composite material and a man-made composite material antenna. The man-made composite material is disposed in a propagation direction of a plane electromagnetic wave and convert it into a spherical wave. Reverse extensions of the spherical wave intersect at a virtual focus. A line connecting the virtual focus to a point on the second surface of the man-made composite material and a line perpendicular to the man-made composite material form an angle θ therebetween, which uniquely corresponds to a curved surface in the man-made composite material. A set formed by points having the same angle θ forms a boundary of the curved surface to which the angle θ uniquely corresponds. Each point on the curved surface to which the angle θ uniquely corresponds has a same refractive index. Refractive indices of the man-made composite material increase gradually as the angle θ increases.
Abstract:
Disclosed is an offset feed satellite television antenna comprising a metamaterial panel (100) arranged behind a feed (1). The metamaterial panel (100) comprises a core layer (10) and a reflective panel (200) arranged on a lateral surface of the core layer (10). The core layer (10) comprises at least one core layer lamella (11). The core layer lamella (11) can be divided into multiple belt areas on the basis of refractive indexes. With a fixed point as a center, the refractive indexes on the multiple belt areas are identical at a same radius, while the refractive indexes on each belt area decrease gradually as the radius increases. For two adjacent belt areas, the minimum value of the refractive indexes of the inner belt area is less than the maximum value of the refractive indexes of the outer belt area. A connection between the center and the feed (1) is perpendicular to the core layer lamella (11), while the center does not overlap the center of the core layer lamella (11). In addition, the present invention also provides a satellite television receiver system having the offset feed satellite television antenna. The present invention allows for facilitated manufacturing and processing, and for further reduced costs.