Abstract:
A substrate includes a thin film transistor (TFT) which includes an active layer, a gate electrode, a source electrode, and a drain electrode; a first insulating layer disposed between the active layer and the gate electrode; a second insulating layer disposed between the gate electrode and the source and drain electrodes; a third insulating layer disposed on the second insulating layer, and including a first region for opening the second insulating layer and a second region for opening one of the source and drain electrodes, the first region and the second region being integrally connected; and a first electrode connected to one of the source and drain electrodes, and disposed so as to cover the first region and the second region.
Abstract:
Provided are a crystallization apparatus and method, which prevent cracks from being generated, a method of manufacturing a thin film transistor (TFT), and a method of manufacturing an organic light emitting display apparatus. The crystallization apparatus includes a chamber for receiving a substrate, a first flash lamp and a second flash lamp, which are disposed facing each other within the chamber, wherein amorphous silicon layers are disposed on a first surface of the substrate facing the first flash lamp and a second surface of the substrate facing the second flash lamp, respectively.
Abstract:
An OLED device includes: a TFT including an active layer, gate, source and drain electrodes, a first insulating layer between the active layer and the gate electrode, and a second insulating layer between the source and drain electrodes, a pixel electrode on the first and second insulating layers, connected to one of the source and drain electrodes, a capacitor including a first electrode on the same layer as the active layer, a second electrode on the same layer as the gate electrode, and a third electrode formed of the same material as the pixel electrode, a third insulating layer between the second insulating layer and the pixel electrode and between the second and third electrodes, a fourth insulating layer covering the source, drain and third electrodes, exposing a portion of the pixel electrode, an organic light-emitting layer on the pixel electrode, and a counter electrode on the organic light-emitting layer.
Abstract:
An array test method of an organic light emitting diode (OLED) display substrate is provided. The OLED display substrate includes a plurality of pixel circuits. Each pixel circuit includes an anode, a first transistor for transmitting a data signal that controls an amount of light emission of an OLED according to a scan signal, a driving transistor for receiving the data signal, generating a driving current corresponding to the data signal, and transmitting the driving current to the OLED, and a second transistor for diode-connecting a gate electrode and a drain electrode of the driving transistor. The array test method includes: injecting electrons or holes that generate an initialization voltage into the anode by turning on the second transistor; radiating electron beams at the anode; and determining whether or not the driving transistor performs normal operation from an amount of secondary electrons emitted from the anode
Abstract:
Disclosed is a method of manufacturing an organic light-emitting display device capable of improving efficiency of a laser generator used for crystallization of amorphous silicon. The method crystallizes amorphous silicon selectively to provide an organic light-emitting display device that includes channel area of a pixel contains polycrystalline silicon and storage area of the pixel contains amorphous silicon.
Abstract:
A laser irradiation apparatus provides a laser beam along a scan direction to a semiconductor layer including a plurality of pixel areas. The laser irradiation apparatus includes at least one laser mask including a plurality of slit groups respectively facing portions of the plurality of pixel areas and a laser generator generating the laser beam that pass through the plurality of slit groups of the at least one laser mask.