A METHOD FOR THE MANUFACTURE OF AN IMPROVED GRAPHENE SUBSTRATE AND APPLICATIONS THEREFOR

    公开(公告)号:US20240128079A1

    公开(公告)日:2024-04-18

    申请号:US18277360

    申请日:2022-02-15

    Abstract: A method for the manufacture of an improved graphene substrate and applications therefor There is provided a method (100) for the manufacture of an electronic device precursor, the method comprising: (i) providing a silicon wafer (200) having a growth surface (205); (ii) forming (105) an insulative layer (210) on the growth surface (205) having a thickness of from 1 nm to 10 nm, preferably 2 nm to 1 nm; (iii) forming (110) a graphene monolayer or multi-layer structure (215) on the insulative layer (210); (iv) optionally forming (115, 120) one or more further layers (220) and/or electrical contacts (225, 230) on the graphene monolayer or multi-layer structure (215); (v) forming (125) a polymer coating (235) over the graphene monolayer or multi-layer structure (215) and any further layers (115) and/or electrical contacts (225, 230); (vi) thinning (130) the silicon wafer (200), or removing the silicon wafer (200) to provide an exposed surface of the insulative layer (210), by etching with an etchant, wherein the silicon wafer (200) is optionally subjected to a grinding step before etching; and (vii) optionally dissolving away (135) the polymer coating (235); wherein the insulative layer (210) and the polymer coating (235) are resistant to etching by the etchant. The resulting conductive graphene substrate can be used in (organic) LEDs, capacitor devices, tunnel FETs and Hall sensors.

    Group-III nitride devices and systems on IBAD-textured substrates

    公开(公告)号:USRE49869E1

    公开(公告)日:2024-03-12

    申请号:US17214607

    申请日:2021-03-26

    Abstract: A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer. Electronic devices such as LEDs can be manufactured from such structures. Because the substrate can act as both a reflector and a heat sink, transfer to other substrates, and use of external reflectors and heat sinks, is not required, greatly reducing costs. Large area devices such as light emitting strips or sheets may be fabricated using this technology.

    METHOD FOR PRODUCING AN EPITAXIAL WAFER
    9.
    发明公开

    公开(公告)号:US20240063027A1

    公开(公告)日:2024-02-22

    申请号:US18269646

    申请日:2021-12-06

    Abstract: The present invention is a method for producing an epitaxial wafer forming a single crystal silicon layer on a single crystal silicon wafer, comprising, a step of removing native oxide film on surface of the single crystal silicon wafer with hydrofluoric acid, a step of forming an oxygen atomic layer on the surface of the single crystal silicon wafer from which the native oxide film has been removed, a step of epitaxially growing the single crystal silicon layer on the surface of the single crystal silicon wafer on which the oxygen atomic layer is formed, wherein the plane concentration of oxygen in the oxygen atomic layer is 1×1015 atoms/cm2 or less. As a result, a method for producing an epitaxial wafer, that an oxygen atomic layer can be stably and simply introduced into an epitaxial layer, and having a good-quality single crystal silicon epitaxial layer is provided.

Patent Agency Ranking