Abstract:
In an example embodiment, a new qualifier is added to members in a Fiber Channel zone to specify whether each member is a target or initiator and in another embodiment a time-range attribute is added to a zone in the zoneset. When the zoneset is applied the number of ACL entries that must be programmed is reduced from k×(k−1) entries to 2(k−1) entries for a zone with k members where k−1 members are of one type (e.g. initiators) and one of the members is of a different type (e.g., a tape device). The time-range attribute is enforced by zone server software and enhances security by, for example, limiting access to sensitive data to specified times. In another embodiment, an incremental zoneset activation protocol is implemented where a hash of a zoneset is created by a switch updating the zoneset and the hash and ID of the switch updating the zoneset are sent to all other switches in the fabric when the zoneset is propagated. The hash and switch ID are stored in persistent storage at all switches in the fabric. When a target zoneset is updated by a source switch only the incremental change is propagated to other switches in the fabric along with the hash and switch ID of the target zoneset. Each switch checks a received hash and switch ID against its stored hash and switch ID to assure that the stored local zoneset is the same as the target zoneset before applying the incremental change.
Abstract:
Data representing capabilities of devices in a data is aggregated on a cluster-basis. Information representing capability attributes of devices in the data center is received. The information representing the capability attributes is analyzed to generate data that groups devices based on similarity of at least one capability attribute. Aggregation data is stored that represents the grouping of the devices based on similarity of the at least one capability attribute and identifies the devices in corresponding groups.
Abstract:
Techniques are provided herein for a device in a network to receive information configured to indicate a control plane traffic load level for one or more server devices that are configured to manage traffic for messaging and presence clients communicating via a messaging and presence protocol. The control plane traffic is associated with the messaging and presence protocol. A determination is made as to when the control plane traffic load level has become unbalanced among the two or more server devices and in response to determining that the control plane traffic load level has become unbalanced, sending a transfer message to one or more clients comprising information configured to initiate migration of one or more clients from a server device that is relatively overloaded to a server device that is relatively underloaded in order to balance the control plane traffic load level among the two or more server devices.
Abstract:
A cloud computing system is provided comprising a plurality of data centers, each data center comprising a plurality of pods each of which comprises network, compute, storage and service node devices. At a designated device of a data center, data center level capabilities summary data is generated that summarizes the capabilities of the data center. Messages advertising the data center level capabilities summary data is sent from a designated device of each data center to a designated device at a provider edge network level of the computing system. At the designated device at the provider edge network level, provider edge network level capabilities summary data is generated that summarizes capabilities of compute, storage and network devices for each data center as a whole and without exposing individual compute, storage and service node devices in each data center.
Abstract:
A switch includes a processor, an ingress port having ingress port logic, and an egress port. It may also include a virtual network identifier rewrite component for rewriting a virtual network identifier in a data frame received the ingress port with a new virtual network identifier. Also included is a virtual network identifier rewrite rule set, where a rule may have one or more of the following: a received virtual network identifier, a source Fibre Channel identifier (FCID) address, an ingress port identifier, and a new virtual network identifier. The ingress port logic may insert a received virtual network identifier into the data frame received at the ingress port, where the virtual network identifier may correspond to the ingress port. The virtual network identifier rewrite component may assign the new virtual network identifier to the data frame according to a specific virtual network identifier rewrite rule.
Abstract:
A switch includes a processor, an ingress port having ingress port logic, and an egress port. It may also include a virtual network identifier rewrite component for rewriting a virtual network identifier in a data frame received the ingress port with a new virtual network identifier. Also included is a virtual network identifier rewrite rule set, where a rule may have one or more of the following: a received virtual network identifier, a source Fibre Channel identifier (FCID) address, an ingress port identifier, and a new virtual network identifier. The ingress port logic may insert a received virtual network identifier into the data frame received at the ingress port, where the virtual network identifier may correspond to the ingress port. The virtual network identifier rewrite component may assign the new virtual network identifier to the data frame according to a specific virtual network identifier rewrite rule.
Abstract:
Methods and apparatus are provided for improving the configuration, management, and distribution of quality of service information in a fibre channel fabric using zoning mechanisms. Configuration of Quality of Service (QoS) information is made easy by using zones as a classifier for flows. QoS information is included in zone objects, thereby using the existing zone distribution mechanism to distribute QoS information. Devices not part of any zones are placed automatically in the default zone with a default QoS priority level. QoS information for a particular packet is available as soon as the zoning information is obtained.
Abstract:
A switch includes a processor, an ingress port having ingress port logic, and an egress port. It may also include a virtual network identifier rewrite component for rewriting a virtual network identifier in a data frame received the ingress port with a new virtual network identifier. Also included is a virtual network identifier rewrite rule set, where a rule may have one or more of the following: a received virtual network identifier, a source Fibre Channel identifier (FCID) address, an ingress port identifier, and a new virtual network identifier. The ingress port logic may insert a received virtual network identifier into the data frame received at the ingress port, where the virtual network identifier may correspond to the ingress port. The virtual network identifier rewrite component may assign the new virtual network identifier to the data frame according to a specific virtual network identifier rewrite rule.
Abstract:
The Switch includes a port configured to receive a command frame when installed in a switching Fabric. The frame identifies a source device and a destination device in the Switching Fabric, a command, and a read/write flag which indicates if the identified source intends to exercise read-only or write access to the destination device. The Switch also includes a processor coupled to the port. The processor is configured to trap the frame and prevent it from reaching the defined destination device in the switching Fabric if both the source and destination devices are in a read-only zone and the flag indicates that the source intends to write to the destination device. In this manner, read-only zones can be implemented in the Switching Fabric.
Abstract:
According to the present invention, methods and apparatus are provided to allow for distribution of fibre channel messages. Messages associated with a variety of applications can be distributed within a single logical fabric to physical connected but logically disconnected fabrics. Interconnecting switches forward messages to neighboring fabrics and aggregate responses before replying to a first fabric.