Abstract:
A method for summarizing capabilities in a hierarchically arranged data center includes receiving capabilities information, wherein the capabilities information is representative of capabilities of respective nodes at a first hierarchical level in the hierarchically arranged data center, clustering nodes based on groups of capabilities information, generating a histogram that represents individual node clusters, and sending the histogram to a next higher level in the hierarchically arranged data center. Relative rankings of capabilities may be used to order a sequence of clustering operations.
Abstract:
Data representing capabilities of devices in a data is aggregated on a cluster-basis. Information representing capability attributes of devices in the data center is received. The information representing the capability attributes is analyzed to generate data that groups devices based on similarity of at least one capability attribute. Aggregation data is stored that represents the grouping of the devices based on similarity of the at least one capability attribute and identifies the devices in corresponding groups.
Abstract:
In one embodiment, a method includes accessing first information identifying a sensor-data set that includes sensor-data from multiple sensor-data streams from multiple sensors over a period of time, with the sensor data from the sensor-data streams having been combined with each other based on a relationship of the sensor data to a sensor subject; accessing second information identifying one or more offers to purchase the sensor-data set; and matching one of the offers with the sensor-data set to facilitate a purchase of the sensor-data set based at least on the one of the offers matched to the sensor-data set.
Abstract:
A method for summarizing capabilities in a hierarchically arranged data center includes receiving capabilities information, wherein the capabilities information is representative of capabilities of respective nodes at a first hierarchical level in the hierarchically arranged data center, clustering nodes based on groups of capabilities information, generating a histogram that represents individual node clusters, and sending the histogram to a next higher level in the hierarchically arranged data center. Relative rankings of capabilities may be used to order a sequence of clustering operations.
Abstract:
In one embodiment, a method includes accessing first information identifying a sensor-data set that includes sensor-data from multiple sensor-data streams from multiple sensors over a period of time, with the sensor data from the sensor-data streams having been combined with each other based on a relationship of the sensor data to a sensor subject; accessing second information identifying one or more offers to purchase the sensor-data set; and matching one of the offers with the sensor-data set to facilitate a purchase of the sensor-data set based at least on the one of the offers matched to the sensor-data set.
Abstract:
In one embodiment, a method includes generating a set of statistics concerning a sensor node in a sensor network based on one or more of sensor data from a sensor at the sensor node, communication to the sensor node from one or more other sensor nodes in the sensor network, or communication from the sensor node; determining based on a subset of the set of statistics whether a predetermined anomalous event correlated with the subset has occurred; and, if the predetermined anomalous event has occurred, generating a summary of the subset and communicating it to a police node in the sensor network.
Abstract:
In particular embodiments, a method includes accessing sensor data from sensor nodes in a sensor network and aggregating the sensor data for communication to an indexer in the sensor network. The aggregation of the sensor data includes deduplicating the sensor data; validating the sensor data; formatting the sensor; generating metadata for the sensor data; and time-stamping the sensor data. The metadata identifies one or more pre-determined attributes of the sensor data. The method also includes communicating the aggregated sensor data to the indexer in the sensor network. The indexer is configured to index the aggregated sensor data according to a multi-dimensional array for querying of the aggregated sensor data along with other aggregated sensor data. One or more first ones of the dimensions of the multi-dimensional array include time and one or more second ones of the dimensions of the multi-dimensional include one or more of the pre-determined sensor-data attributes.
Abstract:
In one embodiment, a method comprises retrieving a request graph specifying request nodes identifying respective requested cloud computing service operations, and at least one request edge specifying a requested path requirements connecting the request nodes; identifying a placement pivot among feasible cloud elements identified in a physical graph representing a data network having a physical topology, each feasible cloud element an available solution for one of the request nodes, the placement pivot having a maximum depth in the physical topology relative to the feasible cloud elements; ordering the feasible cloud elements, according to increasing distance from the placement pivot to form an ordered list of candidate sets of feasible cloud elements; and determining an optimum candidate set, from at least a portion of the ordered list, based on the optimum candidate set having an optimized fitness function in the physical graph among the other candidate sets in the ordered list.
Abstract:
In one embodiment, a method includes receiving a summary of statistics concerning a sensor node in a sensor network that comprises a plurality of sensor nodes, the statistics having been generated based on one or more of sensor data from a sensor at the sensor node, communication to the sensor node from one or more other sensor nodes in the sensor network, or communication from the sensor node; analyzing the summary; and applying based on the analysis one or more predetermined polices to one or more of the sensor nodes or the sensor network.
Abstract:
In one embodiment, an n-dimensional resource vector for each of a plurality of resources in a computer network is determined, each n-dimensional resource vector having n property values for a corresponding resource of the plurality of resources. Upon receiving a request for one or more resources of the plurality of resources, where the request indicates one or more desired property values, the techniques convert the desired property values of the request into an n-dimensional request vector, determine a distance between each resource vector and the request vector, and provide a response to the request, the response indicating one or more closest match resources for the request based on the distances.