Abstract:
An electronic device includes a display and a controller. The controller is configured to receive one or more operational characteristics of the display. The controller is also configured to calculate a blank time voltage level for a data line of the display based on the one or more operational characteristics, wherein the blank time voltage level corresponds to a voltage transmitted along the data line of the display immediately subsequent to image data being transmitted along the data line.
Abstract:
An electronic device that includes a display is provided. The display may have a brightness that is controlled using a series of cascaded digital-to-analog converter circuits. The display may be calibrated at a series of predetermined display brightness settings. For display brightness settings that fall between two consecutive display brightness settings in the series of predetermined display brightness settings, voltage interpolation operations may be performed to obtain the corresponding display brightness settings. Performing voltage interpolations instead of digital brightness setting interpolation helps minimize luminance jumps and unexpected color shifts when adjusting the brightness of the display.
Abstract:
An electronic device includes processors that generate image data. The electronic device also includes an electronic display that displays the image data over a first frame duration by programming a first row of display pixels with the image data. The electronic display also displays the image data over the first frame duration by causing the first row of display pixels to emit light for an emission duration that is based at least in part on a first luminance of the image data. The electronic display further displays the image data over the first frame duration by resetting the first row of pixels before an end of the first frame duration.
Abstract:
An electronic device may be provided with wireless circuitry and a display. A display driver integrated circuit in the display may have a spectrum analyzer circuit. An antenna may monitor for wireless signals. The display driver integrated circuit may use the spectrum analyzer circuit to analyze the wireless signals and determine whether there is a potential for visible display artifacts. In the presence of conditions that can lead to display artifacts, the display driver integrated circuit may adjust a gate driver control signal. Adjustments to the gate driver control signal may be made using adjustable signal dividers. The adjustments to the gate driver control signal eliminate the visible display artifacts.
Abstract:
An electronic device may be provided with wireless circuitry and a display. A display driver integrated circuit in the display may have a spectrum analyzer circuit. An antenna may monitor for wireless signals. The display driver integrated circuit may use the spectrum analyzer circuit to analyze the wireless signals and determine whether there is a potential for visible display artifacts. In the presence of conditions that can lead to display artifacts, the display driver integrated circuit may adjust a gate driver control signal. Adjustments to the gate driver control signal may be made using adjustable signal dividers. The adjustments to the gate driver control signal eliminate the visible display artifacts.
Abstract:
An electronic device may be provided with a housing such as a metal housing in which a display is mounted. Control circuitry in the electronic device such as a system-on-chip integrated circuit may produce image data. A display driver integrated circuit may receive the image data from the system-on-chip integrated circuit and may display the image data on the display. In the absence of electrostatic discharge, the display driver integrated circuit may operate normally and may generate a heartbeat signal. When disrupted due to electrostatic discharge, the display driver circuitry may cease production of the heartbeat signal. The system-on-chip integrated circuit can implement a watchdog timer. If the watchdog timer times out because the heartbeat signal is not received within a timeout period, the system-on-chip integrated circuit may reset the display.