Abstract:
Methods and apparatuses are disclosed for improving resource control and device to device (D2D) transmission in a wireless communication system. In one method, a device receives a configuration including at least a first contention-based resource pool and a second contention-based resource pool, wherein the first contention-based resource pool includes resources for multiplexing D2D transmission(s) and Downlink (DL) transmission(s) in power domain, and the second contention-based resource pool does not include the resources for multiplexing D2D transmission(s) and DL transmission(s) in power domain. The device also receives at least one threshold value related to a power. The device then selects the first contention-based resource pool or the second contention-based resource pool for D2D transmission based on at least the threshold value.
Abstract:
A method and device are disclosed from the perspective of a first Wireless Transmit/Receive Unit (WTRU). In one embodiment, the method includes the first WTRU triggering a first buffer status report (BSR), wherein the first BSR indicates an amount of data expected to arrive. The method also includes the first WTRU triggering a second BSR, wherein the second BSR indicates an amount of data already available. The method further includes the first WTRU generating a MAC (Medium Access Control) PDU (Protocol Data Unit), wherein the MAC PDU includes at most one first BSR MAC CE (Control Element) for the first BSR and at most one second BSR MAC CE for the second BSR.
Abstract:
A method and apparatus are disclosed. In an example from the perspective of a User Equipment (UE), the UE receives a first Radio Resource Control (RRC) message from a network node, wherein the first RRC message is indicative of a first uplink (UL) Bandwidth Part (BWP) of a cell. In response to initiation of a procedure to use a configured grant (CG) resource in RRC inactive state, the UE performs BWP switching from a second UL BWP of the cell to the first UL BWP of the cell. The UE performs, on the first UL BWP, a first UL transmission using the CG resource. In response to completion of the procedure, the UE performs BWP switching from the first UL BWP of the cell to the second UL BWP of the cell.
Abstract:
Methods and devices are disclosed from the perspective of a first wireless transmit/receive unit (WTRU). In one method, the method includes triggering a first buffer status report (BSR), wherein the first BSR indicates an estimated amount of data expected to arrive.
Abstract:
A method and device are disclosed from the perspective of a UE (User Equipment). In one embodiment, the method includes the UE receiving a first signaling to configure a preconfigured uplink resource (PUR) to be used in a cell. The method further includes the UE determining whether to use the PUR in the cell at least based on whether a timing advance is valid, wherein whether the timing advance is valid is based on a difference between a first measurement result and a second measurement result, and wherein the first measurement result is not a cell measurement quantity of the cell.
Abstract:
A method and device are disclosed from the perspective of a UE (User Equipment). In one embodiment, the method includes the UE receiving a first signaling to configure a preconfigured uplink resource (PUR) to be used in a cell. The method further includes the UE determining whether to use the PUR in the cell at least based on whether a timing advance is valid, wherein whether the timing advance is valid is based on a difference between a first measurement result and a second measurement result, and wherein the first measurement result is not a cell measurement quantity of the cell.
Abstract:
Methods and apparatuses for transmission or reception using beamforming in a wireless communication system are disclosed herein. In one method, a user equipment provides information related to a combination of UE beams to a network node, wherein UE beams in the combination can be generated by the UE at the same time. The UE receives, from the network node, a scheduling information for a transmission or a reception. The UE generates one or more UE beams in the combination to perform the transmission or the reception.
Abstract:
A method and apparatus are disclosed from the perspective of a first network node. In one embodiment, the method includes the first network node transmitting a second transmission to a UE (User Equipment) in at least a first symbol of a first TTI (Transmission Time Interval). The method further includes the first network node transmitting a first transmission to a second network node in at least a second symbol of a second TTI, wherein the first TTI is TTI-level aligned to the second TTI and the first symbol is at least partially overlapped with the second symbol in time domain.
Abstract:
A method and apparatus are disclosed. In an example from the perspective of a User Equipment (UE) configured with bundled transmission, the UE initializes a configured uplink grant. The UE performs a plurality of transmissions within a bundle of a Medium Access Control Protocol Data Unit (MAC PDU) using the configured uplink grant. The UE stops a Discontinuous Reception (DRX) timer in response to a first transmission of the plurality of transmissions, wherein the DRX timer is not stopped in response to one or more second transmissions of the plurality of transmissions. When the DRX timer is running, the UE monitors a downlink control channel for an uplink grant for retransmission.
Abstract:
A method and apparatus are disclosed from the perspective of a UE (User Equipment). In one embodiment, the method includes the UE receiving an SCell activation/deactivation MAC (Medium Access Control) control element to activate the SCell. The method further includes the UE activates the SCell based on the SCell activation/deactivation MAC control element. The method also includes the UE receiving a beam indication by a MAC control element via the PCell, wherein the beam indication includes a cell index and the beam indication is used to derive at least one beam to be used in the SCell. In addition, the method includes the UE using the at least one beam for a DL (Downlink) transmission or an UL (Uplink) transmission in the SCell.