Abstract:
A dental model and related systems and methods, including a first component representing a portion of a patient's jaw and a second component that is demountably attachable to the first component, and a second component representing a dental structure of interest, such as the remaining portion of a tooth or a dental implant.
Abstract:
A dental prosthesis is made by externally machining successive layers of wax, each of which is formed on a previous prosthesis layer and/or on a coping. Each wax layer is used to form a mold in situ over the previous prosthesis layer/coping, and the appropriate prosthesis material is cast or otherwise molded to conform to the wax layer by the mold.
Abstract:
Embodiments relate to adding customized cut line information to a shell that is to be formed over mold of a dental arch. In one embodiment, a cut line is determined for the shell. A processing device determines one or more markings for the shell that will mark the cut line. The processing device determines one or more features to add to the mold over which the shell will be formed that will cause the shell to have the one or more markings. The processing device generates a digital model of the mold, the digital model comprising the one or more features, wherein the digital model is usable to manufacture the mold having the one or more features.
Abstract:
A wax model of a required coping is produced using CNC machining techniques based on a virtual model of the coping created from digital data obtained from the intraoral cavity. The dental coping is then fabricated from the wax model.
Abstract:
A digital dental tray system is described including a dental tray shaped to at least partially surround a plurality of teeth and a plurality of three-dimensional (3D) optical imaging elements attached to the dental tray. Each of the 3D optical imaging elements comprises a structured light projector to project a light pattern onto one or more teeth of the plurality of teeth and a camera to capture an image of the one or more teeth.
Abstract:
Feedback data useful in prosthodontic procedures associated with the intra oral cavity is provided. First, a 3D numerical model of the target zone in the intra oral cavity is provided, and this is manipulated so as to extract particular data that may be useful in a particular procedure, for example data relating to the finish line or to the shape and size of a preparation. The relationship between this data and the procedure is then determined, for example the clearance between the preparation and the intended crown. Feedback data, indicative of this relationship, is then generated, for example whether the preparation geometry is adequate for the particular type of prosthesis.
Abstract:
The present disclosure provides method, systems, and devices for expanding arch of teeth. A device for expanding an arch of teeth of a patient can include a removable shell formed of a first material having a number of cavities formed therein. The number of cavities are shaped to receive teeth of a patient. A device for expanding an arch of teeth of a patient can include an arch element extending from the removable shell in a lingual direction and across an arch width of the removable shell. The arch element can be formed of the first material and a second material that is a different material than the first material, can be designed to expand an arch of the teeth of the patient, and can have a width specific to a stage of a treatment plan.
Abstract:
A method for virtual orthodontic treatment is provided in which a virtual set of orthodontic components is associated, in a virtual space, with a first virtual three-dimensional image of teeth, and then by a set of rules which define the effect of the set of components' teeth, the effect of the virtual treatment can be computed. This virtual treatment can be used to predict the results of a real-life orthodontic treatment as to design such a treatment.
Abstract:
A 3D virtual model of an intra oral cavity in which at least a part of a finish line of a preparation is obscured is manipulated in virtual space by means of a computer or the like to create, recreate or reconstruct finish line data and other geometrical corresponding to the obscured part. Trimmed virtual models, and trimmed physical models, can then be created utilizing data thus created. The virtual models and/or the physical models may be used in the design and manufacture of copings or of prostheses.