Abstract:
Disclosed are various embodiments for providing dynamically generated summaries of media content, such as electronic books, audiobooks, audio series, video content series, and so on. A position in media content is determined based at least in part on input from a user. A summary of a portion of the media content is dynamically generated, where the portion of the media content begins or ends relative to the position. A summary of the portion of the media content is presented to the user via an output device.
Abstract:
Techniques for planning of transportation requests may be described. In particular, zones may be generated based on historical information associated with transportation requests, where each zone may be configured to manage a number of the transportation requests. An inter-zone sequence may also be generated relatively statically to indicate an order of progressing between the zones in response to the transportation requests. In addition, an intra-zone sequence for each zone may also be generated relatively dynamically. The intra-zone sequence may indicate an order of progression within the corresponding zone in response to current transportation requests of that zone.
Abstract:
Blur metrics may be calculated for each of the image pixels of a digital image of a scene captured using an imaging device. The blur metrics may be indicative of the level of blur expressed in the digital image, and a blur image representative of the blur metrics may be generated. Subsequently, when another digital image is to be captured using the imaging device, pixel sensors corresponding to high blur metrics may be digitized at a high level of priority, or at a high rate, compared to pixel sensors corresponding to low blur metrics, which may be digitized at a low level of priority, or at a low rate. The blur images may be updated based on changes in blur observed in subsequent images, and different pixel sensors may be digitized at higher or lower levels of priority, or at higher or lower rates, based on the changes in blur.
Abstract:
Where a plurality of machine learning algorithms is available to process information or data in the furtherance of a task, one of the algorithms may be identified as particularly well-suited or appropriate based on attributes of the information or data. Such attributes of the imaging data may be determined by any means, and a prediction as to the performance (e.g., one or more metrics) or success of each of the algorithms may be made. One of the algorithms may ultimately be selected based on such predictions, as well as the computing resources that are available for executing the algorithms, and any other relevant constraints.
Abstract:
Visual cues may be provided for the purpose of triggering the performance of one or more actions associated with a given task. A visual cue may include one or more characters or other markings on any relevant surfaces, as well as naturally appearing edges, contours or outlines within an environment in which the visual cue is provided. When one or more visual cues appear within a field of view of an imaging device, and the visual cues are recognized as such, a task relating to the visual cues may be identified, and instructions for performing the task may be provided. The task may be dependent upon a context in which the visual cues are provided, such that a single visual cue may be associated with multiple tasks in different contexts, and the performance of the task may be confirmed based on imaging data or other relevant information.
Abstract:
Techniques for managing notifications may be described. In an example, the notifications may relate to an item and may be provided to a user device. A passive device may be associated with the item. A delivery management device at a particular location may detect the proximity of the passive device. The delivery management device may cause a notification to be sent to the user device based on the proximity. The notification may describe that the item may have been detected at the particular location.
Abstract:
A vehicle or another object is grasped by a robotic arm of a handling system and caused to undergo one or more movements or manipulations resulting in a change of position, orientation, velocity or acceleration of the vehicle. Sensors provided in the robotic arm capture data representative of forces or torques imparted upon the robotic arm by the vehicle during or after the movement, or power or energy levels of vibration resulting from the movement. A signature representative of an inertial or vibratory response of the vehicle to the movement is derived based on the data. The signature may be compared to a baseline signature similarly derived for a vehicle that is known to be structurally and aerodynamically sound. If the signature is sufficiently similar to the baseline signature, the vehicle may also be determined to be structurally and aerodynamically sound.
Abstract:
An intermediary device may be configured to allow an authorized visitor to access a secure facility (such as a home) on behalf of an owner. The intermediary device may generate an authenticator and provide the authenticator to a service provider, who may then present the authenticator to the intermediary device upon arriving at the facility. The intermediary device may unlock or open, or lock and close, any doors within the facility as necessary in order to grant access to a specific portion of the facility and restrict access to other portions of the facility. The intermediary device may also capture, or cause the capture of, images or other data regarding actions taken by the service provider, and establish a communications channel with the owner for the exchange of information or data regarding such actions, or any events or conditions of the facility.
Abstract:
Autonomous vehicles may be deployed to areas where an item is in demand, and configured to fulfill orders for the item received from the areas. The autonomous vehicles are loaded with the item and dispatched to the area under their own power or in a carrier. When an order for the item is received, an autonomous vehicle delivers the item to a location in the area. Autonomous vehicles may also be equipped with a 3D printer or other equipment and loaded with materials for manufacturing the item. When an order for the item is received, the autonomous vehicle manufactures the item from such materials, and delivers the item. Autonomous vehicles may be configured for collaboration, such as to deliver or manufacture items in multiple stages and to transfer the items between vehicles. Autonomous vehicles may also be configured to automatically access locations in the area, e.g., using wireless access codes.
Abstract:
A system generates a first gift selection matrix that includes a first set of items of interest to a recipient organized in columns of increasing cost and rows of decreasing interest to the recipient. The system transmits the first gift selection matrix to a first user computing device and to a second user computing device. Item selections are received from users, along with gift purchase contribution pledges. If the pledges are insufficient to cover a cost of one of the selected items, the system sends a request to the first user and the second user for either an a second gift selection, or a pledge of additional funds. If the new gift selections are not the same, or if the pledged amounts are insufficient to purchase a selected gift, the system generates a second gift selection matrix. The system transmits the second gift selection matrix to the first user computing device and the second user computing device. A final gift selection can be made from the second matrix.