Abstract:
A robotic device may comprise an adaptive controller configured to learn to predict consequences of robotic device's actions. During training, the controller may receive a copy of the planned and/or executed motor command and sensory information obtained based on the robot's response to the command. The controller may predict sensory outcome based on the command and one or more prior sensory inputs. The predicted sensory outcome may be compared to the actual outcome. Based on a determination that the prediction matches the actual outcome, the training may stop. Upon detecting a discrepancy between the prediction and the actual outcome, the controller may provide a continuation signal configured to indicate that additional training may be utilized. In some classification implementations, the discrepancy signal may be used to indicate occurrence of novel (not yet learned) objects in the sensory input and/or indicate continuation of training to recognize said objects.
Abstract:
Apparatus and methods for arbitration of control signals for robotic devices. A robotic device may comprise an adaptive controller comprising a plurality of predictors configured to provide multiple predicted control signals based on one or more of the teaching input, sensory input, and/or performance. The predicted control signals may be configured to cause two or more actions that may be in conflict with one another and/or utilize a shared resource. An arbitrator may be employed to select one of the actions. The selection process may utilize a WTA, reinforcement, and/or supervisory mechanisms in order to inhibit one or more predicted signals. The arbitrator output may comprise target state information that may be provided to the predictor block. Prior to arbitration, the predicted control signals may be combined with inputs provided by an external control entity in order to reduce learning time.
Abstract:
Systems and methods for predictive/reconstructive visual object tracking are disclosed. The visual object tracking has advanced abilities to track objects in scenes, which can have a variety of applications as discussed in this disclosure. In some exemplary implementations, a visual system can comprise a plurality of associative memory units, wherein each associative memory unit has a plurality of layers. The associative memory units can be communicatively coupled to each other in a hierarchical structure, wherein data in associative memory units in higher levels of the hierarchical structure are more abstract than lower associative memory units. The associative memory units can communicate to one another supplying contextual data.
Abstract:
Robots have the capacity to perform a broad range of useful tasks, such as factory automation, cleaning, delivery, assistive care, environmental monitoring and entertainment. Enabling a robot to perform a new task in a new environment typically requires a large amount of new software to be written, often by a team of experts. It would be valuable if future technology could empower people, who may have limited or no understanding of software coding, to train robots to perform custom tasks. Some implementations of the present invention provide methods and systems that respond to users' corrective commands to generate and refine a policy for determining appropriate actions based on sensor-data input. Upon completion of learning, the system can generate control commands by deriving them from the sensory data. Using the learned control policy, the robot can behave autonomously.
Abstract:
Gesture recognition systems that are configured to provide users with simplified operation of various controllable devices such as, for example, in-home controllable devices. In one implementation, the gesture recognition system automatically configures itself in order to determine the respective physical locations and/or identities of controllable devices as well as an operating mode for controlling the controllable devices through predetermined gesturing. In some implementations, the gesture recognition systems are also configured to assign boundary areas associated with the controllable devices. Apparatus and methods associated with the gesture recognition systems are also disclosed.
Abstract:
Robotic devices may be trained by a user guiding the robot along target action trajectory using an input signal. A robotic device may comprise an adaptive controller configured to generate control signal based on one or more of the user guidance, sensory input, performance measure, and/or other information. Training may comprise a plurality of trials, wherein for a given context the user and the robot's controller may collaborate to develop an association between the context and the target action. Upon developing the association, the adaptive controller may be capable of generating the control signal and/or an action indication prior and/or in lieu of user input. The predictive control functionality attained by the controller may enable autonomous operation of robotic devices obviating a need for continuing user guidance.
Abstract:
Systems and methods for predictive/reconstructive visual object tracking are disclosed. The visual object tracking has advanced abilities to track objects in scenes, which can have a variety of applications as discussed in this disclosure. In some exemplary implementations, a visual system can comprise a plurality of associative memory units, wherein each associative memory unit has a plurality of layers. The associative memory units can be communicatively coupled to each other in a hierarchical structure, wherein data in associative memory units in higher levels of the hierarchical structure are more abstract than lower associative memory units. The associative memory units can communicate to one another supplying contextual data.
Abstract:
Computerized appliances may be operated by users remotely. A learning controller apparatus may be operated to determine association between a user indication and an action by the appliance. The user indications, e.g., gestures, posture changes, audio signals may trigger an event associated with the controller. The event may be linked to a plurality of instructions configured to communicate a command to the appliance. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The sensory input may be used to determine the user indications. During operation, upon determine the indication using sensory input, the controller may cause execution of the respective instructions in order to trigger action by the appliance. Device animation methodology may enable users to operate computerized appliances using gestures, voice commands, posture changes, and/or other customized control elements.
Abstract:
Computerized appliances may be operated by users remotely. In one implementation, a learning controller apparatus may be operated to determine association between a user indication and an action by the appliance. The user indications, e.g., gestures, posture changes, audio signals may trigger an event associated with the controller. The event may be linked to a plurality of instructions configured to communicate a command to the appliance. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The sensory input may be used to determine the user indications. During operation, upon determine the indication using sensory input, the controller may cause execution of the respective instructions in order to trigger action by the appliance. Device animation methodology may enable users to operate computerized appliances using gestures, voice commands, posture changes, and/or other customized control elements.
Abstract:
Apparatus and methods for training of robotic devices. Robotic devices may be trained by a user guiding the robot along target trajectory using an input signal. A robotic device may comprise an adaptive controller configured to generate control commands based on one or more of the user guidance, sensory input, and/or performance measure. Training may comprise a plurality of trials. During first trial, the user input may be sufficient to cause the robot to complete the trajectory. During subsequent trials, the user and the robot's controller may collaborate so that user input may be reduced while the robot control may be increased. Individual contributions from the user and the robot controller during training may be may be inadequate (when used exclusively) to complete the task. Upon learning, user's knowledge may be transferred to the robot's controller to enable task execution in absence of subsequent inputs from the user.